Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (06): 143-150    DOI:
    
The Genes Expression Control of Xylanolytic Enzymes
Download: HTML   PDF(568KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Xylane is the major component in hemicellulose, a recycling biological resource, and could be used widely in industry. Xylane degradation involved in many xylanolytic enzymes, including xlynase, β-D-xylosidase, acetylxylane esterase, arabinase, α-glucuronidase, ferulic acid esterase,p-coumaric acid esterase, and et al. The advances in xylanolytic genes expression control was reviewed in the paper, including the effect of XlnR, CreA, different substrates, pH, HAP-CAAT complexes and et al, and the research in future was discussed at the end of the paper.



Key wordsxylanolytic enzymes;gene;gene expresssion control     
Received: 06 October 2008      Published: 02 July 2009
Cite this article:

WANG Wen-Ya-1, LIU Qing-1, FU Xiao-Lei-1, YUAN Ji-Peng-1, 2. The Genes Expression Control of Xylanolytic Enzymes. China Biotechnology, 2009, 29(06): 143-150.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I06/143

[1] 袁其朋,马润宇. 黑曲霉产酶过程中变温操作的研究. 北京化工大学学报, 1999, 26 (2):11~16 Yuan Q P, Ma R Y.Journal of Beij ing University of Chemical Technology, 1999,26(2):11~16 [2] 张怀,袁其朋,王永生,等.木聚糖酶生产菌黑曲霉的诱变及周期变压发酵.北京化工大学学报, 2001,28(1):14~17 Zhang H,Yuan Q P, Wang Y S,et al.Journal of. Beijing University of Chemical Technology, 2001,28(1):14~17 [3] Saha B C.Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 2003a,30(5):279~291 [4] Polizeli M L, Rizzatti A C, Monti R, et al. Xylanases from fungi: properties and industrial applications.Applied Microbiology and Biotechnology, 2005,67(5):577~591 [5] Miyazaki K, Takenouchi M, Kondo H, et al. Thermal stabilization of bacillus subtilis family11 xylanase by directed evolution. Journal of Biological Chemistry, 2006,281(15):10236~10242 [6] van Peij N N, Brinkmann J,Vrsanská M,et al. H βxylosidase activity, encoded by xlnD, is essential for complete hydrolysis of xylan by Aspergillus niger but not for induction of the xylanolytic enzyme spectrum. European Journal of Biochemistry,1997, 245:164~173 [7] de Vries R P, Kester H C, Poulsen C H, et al. Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res ,2000, 327(4):401~410 [8] Ana C S, Fernanda Z F, Maria C B, et al. Regulation of xylanase in Aspergillus phoenicis:a physiological and molecular approach. Journal of Industrial Microbiology and Biotechnology,2008,35(4):237~244 [9] Lee R L, Paul J W,van Zyl W H,et al.Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews, 2002, 66(3):506~577 [10] 江正强,李里特,李颖.耐热木聚糖酶研究进展.中国生物工程杂志,2003, 23(8):47~51 Jiang Z Q, Li L T, Li Y.China Biotechnology, 2003,23(8):47~51 [11] Singh S, Madlala A M, Prior B A. Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiology Reviews,2006,27(1):3~16 [12] van Peij N N,Visser L H de Graaff. Isolation and analysis of xlnR, encoding a transcriptional activator coordinating xylanolytic expression in Aspergillus niger. Molecular Microbiology, 1998,27:131~142 [13] Hasper A A, Trindade L M, van der Veen D, et al. Functional analysis of the transcriptional activator XlnR from Aspergillus niger. Microbiology, 2004,150:1367~1375 [14] Nina A, Tiina P, Merja P. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews, 2004, 29(4):719~739 [15] Bryant G, Ptashne M.Independent recruitment In Vivo by Gal4 of two complexes required for transcription. Molecular Cell,2003,11(5):1301~1309 [16] MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators:the zinc cluster proteins. Microbiology and Molecular Biology Reviews,2006,70(3):583~604 [17] Suárez T, de Queiroz M V, Oestreicher N, et al. The sequence and binding specificity of UaY, the specific regulator of the purine utilization pathway in Aspergillus nidulans, suggest an evolutionary relationshi Pwith the PPR1 protein of Saccharomyces cerevisiae. EMBO Journal,1995,14:1453~1467 [18] Li D X, Sirakova T, Rogers L, et al. Regulation ofcConstitutively expressed and Induced cutinase genes by different zinc finger transcription factors in Fusarium solani f. sp. pisi(Nectria haematococca). Journal of Biological Chemistry, 2002 , 277(10):7905~7912 [19] Hasper A A,Visser J, de Graaff L H. The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates dxylose reductase gene expression. Molecular Microbiology,2000,36(1):193~200 [20] Aro N, Pakula T, Merja P. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews,2005,29(4):719~739 [21] Kaichang L, Parastoo A, Robert C, et al. Relationships between activities of xylanases and xylan structures. Enzyme and Microbial Technology, 2000,27(12):89~94 [22] Koseki T, Okuda M, Sudoh S, et al. Role of two αLarabinofuranosidases in arabinoxylan degradation and characteristics of the encoding genes from shochu koji molds,Aspergillus kawachii and Aspergillus awamori. Journal of Bioscience and Bioengineering, 2003, 96 (3):232~241 [22] Tetsuo K, Keietsu A, Kiyoshi A, et al. Genomics of Aspergillus oryzae. Bioscience Biotechnology and Biochemistry, 2007,71(3): 646~670 [23] van Peij N N, Gielkens M M C, de Vries R P, et al. The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appllied and Environmental Microbiology,1998,64:3615~3619 [24] de Groot M J L, van de Vondervoort P J I, de Vries R P, et al. Isolation and characterization of two specific regulatory Aspergillus niger mutants shows antagonistic regulation of arabinan and xylan metabolism. Microbiology,2003, 149:1183~1191 [25] Marui J, Tanaka A, Mimura S, et al. A transcriptional activator, AoXlnR,controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genetics and Biology, 2002, 35(2):157~169 [26] de Vries R P,Benen J A E,de Graaff L H,Visser J. Plant cell wall degrading enzymes produced by Aspergillus. In:Industrial applications, the mycota, vol. X. SpringerVerlag, Heidelberg, Germany, 2004. [27] 邹永龙,王国强.木聚糖降解酶系统.植物生理学通讯,1999,35(5):404~410 Zou Y L, Wang G Q.Letters in plant Physiology, 1999,35(5):404~410 [28] van Kuyk P A, de Groot M J, Ruijter G J,et al. The Aspergillus niger Dxylulose kinase gene is coexpressed with genes encoding arabinan degrading enzymes, and is essential for growth on Dxylose and Larabinose. Eur J Biochem, 2001,268(20):5414~5423 [29] Saha B C. αLArabinofuranosidases biochemistry, molecular biology and application in biotechnology. Biotechnology Advances, 2000,18(5):403~423 [30] de Vries R P,Visser J. Regulation of the feruloyl esterase (faeA) gene from Aspergillus niger. Applied and Environmental Microbiology.,1999, 65:5500~5503 [31] Crepin V, Faulds C, Connerton I. Functional classification of the microbial feruloyl esterases. Applied Microbiology and Biotechnology,2004,63(6):647~652 [32] Ourdia B, Eric R, Michèle A, et al. Exploration of members of Aspergillus sections Nigri, Flavi, and Terrei for feruloyl esterase production. Canadian Journal of. Microbiology,2006,52(9): 886~892 [33] Dowzer C E A,Kelly J M. 1991. Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Molecular and Cellular Biology 11:5701~5709 [34] Bautista L F, Aleksenko A, Hentzer M, et al. Antisense silencing of the creA gene in Aspergillus nidulans. Appllied and Environmental Microbiology. 2000,66(10):4579~4581 [35] Orejas M, MacCabe A P, PérezGonzález José A, et al. The widedomain carbon catabolite repressor CreA indirectly controls expression of the Aspergillus nidulans xlnB gene,encoding the acidic endoβ(1,4)xylanase X24. Journal of Bacteriology,2001,183(5): 1517~1523 [36] Nyerhovwo J T, John S S, Jonathan D W. Isolation of the carbon catabolite repressor(CREA)gene from the plantpathogenic fungus Cochliobolus carbonum. Mitochondrial DNA, 2003,14(2):103~107 [37] Ruijter G J G, Visser J. Carbon repression in aspergilli. FEMS Microbiology Letters,1997, 151:103~114 [38] Prathumpai W, McIntyre M, Nielsen J. The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans. Applied Microbiology and Biotechnology,2004,63(6):748~753 [39] Mogensen J, Nielsen H B, Hofmann G,et al. Transcription analysis using highdensity microarrays of Aspergillus nidulans wildtype and creA mutant during growth on glucose or ethanol. Fungal Genetics and Biology,2006,43(8):593~603 [40] Panozzo C, Cornillot E, Felenbok B. The CreA repressor is the sole DNAbinding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. Journal of Biological Chemistry,1998,273:6367~6372 [41] Flipphi M, van de Vondervoort P J I, Ruijter G J G, et al. Onset of carbon catabolite repression in Aspergillus nidulans: parallel involvement of hexokinase and glucokinase in sugar signaling. Journal of Biological Chemistry, 2003, 278(14), 11849~11857 [42] Chen H, Lee M, Daub M E,et al. Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae. Molecular Microbiology, 2007,64(3):755~770 [43] Pachlinger R, Mitterbauer Rudolf, Adam G,et al. Metabolically independent and accurately adjustable Aspergillus sp. expression system. Applied and Environmental Microbiology, 2005, 71(2):672~678 [44] Strauss J, Horvath H K, Abdallah B M, et al. The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and posttranscriptional level. Molecular Microbiology,1999,32:169~178 [45] Ilyés H, Fekete E, Karaffa L, et al. CreAmediated carbon catabolite repression of βgalactosidase formation in Aspergillus nidulans is growth rate dependent. FEMS Microbiology Letters,2004, 235(1):147~151 [46] Ruijter G J G, Vanhanen S I, Gielkens M M C,et al.. Isolation of Aspergillus niger creA mutants: effects on expression of arabinases and Larabinose catabolic enzymes. Microbiology,1997,143:2991~2998 [47] PerezGonzalez J A, van Peij N N, Bezoen A, et al. Molecular cloning and transcriptional regulation of the Aspergillus nidulans xlnD gene encoding βxylosidase. Appl Environ Microbiol,1998,64:1412~1419 [48] Lockington R A, Rodbourn L, Barnett S, et al. Regulation by carbon and nitrogen sources of a family of cellulas Aspergillus nidulans. Fungal Genetics and Biology, 2002, 37(2):190~196 [49] Saha B C.Purification and properties of an extracellular βxylosidase from a newly isolated Fusarium proliferatum. Bioresource Technology, 2003b,90,(1): 33~38 [50] Matsumura K, Obata H, Hata Y, et al. Isolation and characterization of a novel gene encoding αLarabinofuranosidase from Aspergillus oryzae. Journal of Bioscience and Bioengineering, 2004, 98(2):77~84 [51] Sakamoto T, Kawasaki H. Purification and properties of two typeB α arabinofuranosidases produced by Penicillium chrysogenum. Biochimica et Biophysica Acta (BBA)  General Subjects, 2003,1621(2):204~210 [52] de Vries R P, Michelsen B, Poulsen C H, et al. The faeA genes from Aspergillus niger and Aspergillus tubigensisencode ferulic acid esterases involved in the degradation of complex cell wall polysaccharides. Appllied and Environmental Microbiology,1997,63:4638~4644 [53] Lucie P, Benen J A E, Kester H C M, et al. pgaA and pgaB encode two constitutively expressed endopolygalacturonases of Aspergillus niger. Biochemisry Journal,2000, 345:637~644 [54] van der VlugtBergmans C J B, Meeuwsen P J A, Voragen A G J,et al. Endoxylogalacturonan hydrolase, a novel pectinolytic enzyme. Appllied and Environmental Microbiology, 2000,66(1):36~41 [55] Sapag A, Wouters J, Lambert C, et al.The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. Journal of Biotechnology,2002, 95(2):109~131 [56] Zhai C, Cao J, Wang Y. Cloning and expression of a pectate lyase gene from Bacillus alcalophillus NTT33. Enzyme and Microbial Technology, 2003,33(23):173~178 [57] de Vries R P,Visser J,de Graaff L H. CreA modulates the XlnR induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Research of Microbiology, 1999,150:281~285 [58] Bagga P S,Sandhu D K,Sharma S. Effect of exogenous cyclic AM Pon catabolite repression of cellulase formation in Aspergillus nidulans. Acta of Biotechnology,1991,11:395~402 [59] Mach R L, Zeilinger S. Regulation of gene expression in industrial fungi:Trichoderma. Applied Microbiology and Biotechnology, 2003,60(5):515~522 [60] Pealva M A, Arst H N. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiology and Molecular Biology Reviews, 2002, 66(3):426~446 [61] Flaherty J E, Pirttil A M, Bluhm B H, et al. PAC1, a pHregulatory gene from Fusarium verticillioides. Applled and Environmental Microbiology,2003,69(9): 5222~5227. [62] Orejas M,Tilburn E A,Sarkar E J, et al. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxyterminal moiety. Genes Development,1995,9:1622~1632 [63] Denison S H. pH regulation of gene expression in fungi. Fungal Genetic. Biology,2000,29:61~71 [64] Chávez R, Bull P, Eyzaguirre J. The xylanolytic enzyme system from the genus Penicillium. Journal of Biotechnology, 2006,123(4):413~433 [65] Gielkens M M C, GonzalesCandelas L, SanchezTorres P, et al. The abfB gene encoding the major αLarabinofuranosidase of Aspergillus nidulans: nucleotide sequence, regulation and construction of a disrupted strain. Microbiology,1999,145:735~741 [66] Hildén L, Johansson G. Recent developments on cellulases and carbohydratebinding modules with cellulose affinity. Biotechnology Letters,2004,26(22):1683~1693 [67] MacCabe A P, Orejas M, PerezGonzalez J A,et a;. Opposite patterns of expression of two Aspergillus nidulans xylanase genes with respect to ambient pH. Journal of Bacteriology,1998,180:1331~1333 [68] MacCabe A P, Orejas M, PerezGonzalez J A,et al. Opposite patterns of expression of two Aspergillus nidulans xylanase genes with respect to ambient pH. Journal of Bacteriology,1998,180:1331~1333 [69] Jecu L. Solid state fermentation of agricultural wastes for endoglucanase production. Industrial Crops and Products, 2000, 11(1):1~5 [70] Buschlen S, Amillet J M, Guiard B, et al. The S. cerevisiae HA Pcomplex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression. Comparative and Functional Genomics,Yeast, 2003,4(1):37~46 [71] Kato M. An overview of the CCAATbox binding factor in filamentous fungi:assembly,nuclear translocation, and transcriptional enhancement. Bioscience Biotechnology and Biochemistry,2005,69(4):663~672 [72] de Groot M J L, van den Dool C, Wten H A B.Regulation of Pentose Catabolic Pathway Genes of Aspergillus niger. Food Technology and Biotechnology,2007, 45 (2): 134~138 [73] Ito T, Tani S, Itoh T, et al. Mode of AmyR Binding to the CGGN8AGG Sequence in the Aspergillus oryzae taaG2 Promoter. Bioscience Biotechnology and Biochemistry, 2004,68(9):19061911 [74] Brakhage A. A., Spr?te P., AlAbdallah Q. Regulation of penicillin biosynthesis in filamentous fungi, Advance in Biochemical Engineering and Biotechnology,2004,88:45~90
No related articles found!