Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (5): 126-130    DOI:
    
Diatom Nanotechnology
XIA Song, ZHANG Cheng-wu
Institute of Hydrobiology, Ji'nan University, Guangzhou 510632, China
Download: HTML   PDF(1053KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Diatoms are microscopic, single-celled algae that possess rigid cell walls (frustules) composed of amorphous silica. The intact diatom frustules possess intricate nanoscale features. Depending on the species of diatom and the growth conditions, the frustules can display different morphologies. The almost 200 000 different diatom species feature unique frustule architectures that are instructive for construction of photonic structures, chemo/biosensing and new nano-devices. The researches of diatom molecular biology and frustule formation are instructive for development of biomimetic synthesis of silica-based materials, chemical transformations and templating techniques. It is possible to design and produce specific frustules that have a wide rang of applications in nanotechnology.



Key wordsBiomaterials      Biophotonic structures      Chemo/biosensing      Nano-device      Diatom     
Received: 14 October 2010      Published: 27 May 2011
ZTFLH:  TB34  
Cite this article:

XIA Song, ZHANG Cheng-wu. Diatom Nanotechnology. China Biotechnology, 2011, 31(5): 126-130.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I5/126


[1] Parkinson J, Gordon R. Beyond micromachining: the potential of diatoms. Nanotechnology, 1999, 17: 190-196.

[2] Werner D, The Biology of Diatom.University of California Press: 1977.

[3] Mann D G, Droop S J M, Biodiversity, biogeography and conservation of diatoms. Hydrobiologia, 1996, 336: 19-32.

[4] Losic D, James G, Mitchell, et al. Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater, 2009, 21: 2947-2958.

[5] Hildebrand M, Doktycz M J, Allison D P. Application of AFM in understanding biomineralformation in diatoms. Pflugers Arch - Eur J Physiol, 2008, 456: 127-137.

[6] Gebeshuber I C, Kindt J H, Thompson J B, et al. Atomic force microscopy study of living diatoms in ambient conditions. Journal of Microscopy, 2003, 212: 292-299.

[7] Gordon R, Drum R W. The chemical basis for diatom morphogenesis. Int Rev Cytol, 1994, 150: 243-372.

[8] Parkinson J, Brechet Y, Gordon R. Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules. Biochimica et Biophysica Acta, 1999, 1452: 89-102.

[9] Tesson B, Hildebrand M. Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica:Substructure formation and the role of microfilaments. J Struct Bio, 2010,169(1):62-74.

[10] Gordon R, Losic D, Tiffany M A, et al. The glass menagerie: diatoms for novel applications in nanotechnology. Trends in Biotechnology. 2008, 27(2): 116-127.

[11] Scala S, Bowler C. Molecular insights into the novel aspects of diatom biology. Cellular and Molecular Life Sciences, 2001, 58: 1666-1673.

[12] Kroger N. Prescribing diatom morphology: toward genetic engineering of biological nanomaterials. Current Opinion in Chemical Biology, 2007, 11: 662-669.

[13] Frigeri L G, Radabaugh T R, Haynes P A, et al. Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana. Molecular and Cellular Proteomics. 2006, 5: 182-193.

[14] Stefano L D, Maddalena P, Moretti L, et al. Nano-biosilica from marine diatoms: A brand new materialfor photonic applications. Superlattices and Microstructures, 2009, 46: 84-89.

[15] Butcher K S A, Ferris J M, Phillps M R, et al. A luminescence study of porous diatoms. Materials Science and Engineering C, 2005, 25: 658-663.

[16] Setaro A, Lettieri S, Maddalena P, et al. Highly sensitive optochemical gas detection by luminescent marine diatoms. Appl Phys Lett, 2007, 91: 051921.

[17] Townley H E, Parker A R, Helen W C. Exploitation of diatom frustules for nanotechnology: tethering active biomolecules. Adv Funct Mater, 2008, 18:369-374.

[18] Stefano L D, Lamberti A, Rotiroti L, et al. Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter. Acta Biomaterialia, 2008, 4: 126-130.

[19] Stefano L D, Rotiroti L, Stefano M D, et al. Marine diatoms as optical biosensors. Biosensors and Bioelectronics, 2009, 24: 1580-1584.

[20] Gale D K, Gutu T, Jiao J, et al. Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Adv Funct Mater, 2009, 19: 926-933.

[21] Sandhage K H, Dickerson M B, Huseman P M, et al. Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: shape-preserving reactive conversion of biosilica (diatom) microshells. Adv Mater, 2002, 14(6) : 429-433.

[22] Bao Z H, Weatherspoon M R, Shian S, et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature, 2007, 446(8): 172-175.

[23] Toster J, Iyer K S, Burtovyy R, et al. Regiospecific assembly of gold nanoparticles around the pores of diatoms: toward three-dimensional nanoarrays. J Am Chem Soc, 2009, 131: 8356-8357.

[24] Losic D, Mitchell J G, Lal R, et al. Rapid fabrication of micro- and nanoscale patterns by replica molding from diatom biosilica. Adv Funct Mater, 2007, 17: 2439-2446.

[25] Perez-Cabero M, Puchol V, Beltran D, et al. Thalassiosira pseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material. Carbon, 2008, 46: 297-304.

[26] Qin T, Gutu T, Jiao J, et al. Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum. ACS Nano, 2008, 2(6): 1296-1304.

[27] Jeffryes C, Gutu T, Jiao J, et al. Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. Materrials Science and Engineering C, 2008, 28: 107-118.

[28] Safonava T A, Annenkov V V, Chebykin E P, et al. Aberration of morphogenesis of siliceous frustule elements of the diatom Synedra acus in the presence of Germanic acid. Biochemistry(Moscow), 2007, 72: 1261-1269.

[29] Jeffryes C, Solanki R, Rangineni Y, et al. Electroluminescence and photoluminescence from nanostructured diatom frustules containing metabolically inserted germanium. Adv Mater, 2008, 20: 2633-2637.

[30] Jeffryes C, Gutu T, Jiao J, et al. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. Acs Nano, 2008, 2(10): 2103-2112.

[31] Wang W, Gutu T, Gale D K, et al. Self-assembly of nanostructured diatom microshells into patterned arrays assisted by polyelectrolyte multilayer deposition and inkjet printing. J Am Chem Soc, 2009, 131(12): 4178-4179.

[32] Umemura K, Noguchi Y, Ichinose T, et al. Diatom cells grown and baked on a functionalized mica surface. J Biol Phys, 2008, 34: 189-196.

[1] ZHANG Hu,LIU Zhen-zhou,CHEN Jia-min,GAO Bao-yan,ZHANG Cheng-wu. Research Progress on the Production of Bioactive Compounds from Marine Diatoms[J]. China Biotechnology, 2021, 41(4): 81-90.
[2] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[3] ZHANG Xiao-min, WANG Shi-yong, LI Gen, ZHAO Hong-bin. The Study of Osteogenic Induction of Type Ⅰ Collagen /Poly(caprolactone)/Attapulgite Composite Scaffold Materials in Vitro[J]. China Biotechnology, 2016, 36(5): 27-33.
[4] SHEN Ting-ting, ZHANG Guang-ya. Self-assembly Mechanism and Biological Applications of Smart Peptides[J]. China Biotechnology, 2014, 34(5): 87-91.
[5] WANG De-ping. Analysis of Research and Development on Nano Biomaterials Topics in "Eleventh Five-Year Plan" National High Technology Research and Development Program[J]. China Biotechnology, 2012, 32(10): 135-138.
[6] . Diatom Nanotechnology[J]. China Biotechnology, 2011, 31(05): 0-0.
[7] DIAO Yu-Hua, HAN Chao-Long, WANG Xiao-Zheng, HU Cheng-Jian, CAO Xiao-Gong. Studies on Selecting of Different Mediums for EPA Production by Diatom Nitzschia laevis[J]. China Biotechnology, 2009, 29(12): 69-73.
[8] . Researches and Developments of Nerve Guide Conduits[J]. China Biotechnology, 2007, 27(7): 112-116.
[9] . Studies of Temperature Shift Fermentation for Eicosapentaenoic Acid Production by Nitzschia laevis[J]. China Biotechnology, 2007, 27(12): 57-60.