Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (5): 108-112    DOI:
    
The Antithrombin Activity Detection of EH in Vitro
QIN Xiao-yong1, YU Ai-ping2, WANG Wen-wen3, BI Jian-jin2, GUO Xiao-jun1, YUAN Hong-shui1, WU Zu-ze2, JIN Ji-de2, ZHU Bao-cheng1
1. College of Life Science, Agricultural University of Hebei, Baoding 071001, China;
2. Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, China;
3. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(1083KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Recombinant protein EH originates from hirudin by linking three amino acids to its N-terminal. The three amino acids are recognized and cut by coagulate factor Xa (FXa) and XIa (FXIa), that will release the antithrombin activity of hirudin.The cleavage efficiency of FXa to EH was compared under different conditions, incuding emzymolytic time and temperature, the molar ratio of FXa and EH, and reaction solution. Results showed that the antithrombin activity of EH increased proportionally, under certain conditions, as the reaction time and temperature increased, Moreover, the FXa cleavage activity is enhanced when the molar ratio of FXa and EH was increased. It seems that saline is more suitable reaction solutions for FXa to cut EH. So the optimal cleavage conditions for EH with FXa in vitro is that EH was reacted with FXa at 37℃ for 6 hours in saline solution with the molar ratio (1 ∶180) of FXa and EH. A practical and reproducible method for the activity determination and quality control of EH in vitro was developed.



Key wordsHirudin      EH      Antithrombin activity      Coagulate factor Xa     
Received: 20 January 2011      Published: 27 May 2011
ZTFLH:  R973+.2  
Cite this article:

QIN Xiao-yong, YU Ai-ping, WANG Wen-wen, BI Jian-jin, GUO Xiao-jun, YUAN Hong-shui, WU Zu-ze, JIN Ji-de, ZHU Bao-cheng. The Antithrombin Activity Detection of EH in Vitro. China Biotechnology, 2011, 31(5): 108-112.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I5/108


[1] Loscalzo J. Thrombin inhibitors in fibrinolysis: a Hobson's choice of alternatives. Circulation, 1996, 94(5): 863-865.

[2] Wallace A, Dennis S, Hofsteenge J, et al. Contribution of the N-terminal region of hirudin to its interaction with thrombin. Biochemistry, 1,28(26): 10079-10084.

[3] Wirsching F, Opitz T, Dietrich R, et al. Display of functional thrombin inhibitor hirudin on the surface of phage M13. Gene, 1997,204(1-2): 177-184.

[4] Syed S, Schyler P D, Kulczycky M, et al. Potent antithrombin activity and delayed clearance from the circulation characterize recombinant hirudin genetically fused to albumin. Blood, 1997,89(9): 3243-3252.

[5] Eisenberg P R, Siegel J E, Abendschein D R, et al. Importance of factor Xa in determining the procoagulant activity of whole-blood clots. J Clin Invest, 1993,91(5): 1877-1883.

[6] McKenzie C R, Abendschein D R, Eisenberg P R. Sustained inhibition of whole-blood clot procoagulant activity by inhibition of thrombus- associated factor Xa. Arterioscler Thromb Vasc Biol, 1996,16(10): 1285-1291.

[7] Zhang C L, Yu A P, Yuan B, et al. Construction and functional evaluation of hirudin derivatives with low bleeding risk. Thromb Haemost, 2008,99: 324-330.

[8] 国家药典委员会. 《中华人民共和国药典》2005年版第二部. 北京: 化学工业出版社, 2005,866-867. Chinese Pharmacopoeia Comission. Chinese Pharmacopoeia. 2nd ed, Beijing: Chemical Industry Press, 2005, 866-867.

[9] 雷丹青, 刘绵林, 周先丽. 发色底物法测定注射用降纤酶中类凝血酶的含量. 中国现代应用药学杂志, 2005, 18 (6): 498-500. Lei D Q, Liu J L, Zhou X L. Chinese Journal of Modern Applied Pharmacy, 2005, 18 (6): 498-500.

[10] 丁有学, 张翊, 郭莹, 等. 重组水蛭素生物学活性检测参考品的研制备和标定.中国生物制品学杂志, 2005, 18 (6): 498-500. Ding Y X, Zhang Y, Guo Y, et al. Chin J Biologicals, 2005, 18 (6): 498-500.

[11] Saporito-Irwin S M, Van Nostrand W E. Coagulation Factor XIa Cleaves the RHDS Sequence and Abolishes the Cell Adhesive Properties of the Amyloid β-Protein. J. Biol. Chem, 1995, 270 (44): 26265-26269.

[1] DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy[J]. China Biotechnology, 2020, 40(8): 24-32.
[2] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[3] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[4] WANG Gang,XIAO Yu,LI Yi,LIU Zhi-gang,PEI Cheng-li,WU Li-da,LI Yan-li,WANG Xi-qing,ZHANG Ming-lei,CHEN Guang,TONG Yi. Effect of ldhL Gene Knock out Mutant on Lactobacillus delbrueckii subsp. blgaricus Producing L-lactic Acid[J]. China Biotechnology, 2019, 39(8): 66-73.
[5] Jing-yun FENG,Ling-qia SU,Jing WU. Synthesis and Extraction of Trehalose from Multiple Enzymes Reaction[J]. China Biotechnology, 2019, 39(7): 65-70.
[6] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[7] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[8] Lin YANG,Yong-chao LI,Teng-hua ZHANG,Yi-xiao DENG,Jin YANG,Zhi-bo GAO. Comprehensive Evaluation is needed for Precision Diagnosis in Cancer Immunotherapies[J]. China Biotechnology, 2019, 39(2): 62-73.
[9] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[10] Wen-jing WANG,Li-yu YANG,Chan-juan LIU,Jin ZHAO,Qin LUO. Effect of Glutamate Dehydrogenase Deletion on Biofilm Formation,Virulence and Extracellular Proteins Expression of Listeria monocytogenes[J]. China Biotechnology, 2018, 38(9): 1-11.
[11] Fang CHEN,Gang XU,Li-rong YANG,Jian-ping WU. Enhancing the Activity of LkTADH by Site-Directed Mutagenesis to Prepare Key Chiral Block of Statins[J]. China Biotechnology, 2018, 38(9): 59-64.
[12] Chao-di TONG,Jian-ping WU,Li-rong YANG,Gang XU. Crystal Structural Analysis of DehDIV-R by X-ray Crystallography[J]. China Biotechnology, 2018, 38(8): 19-25.
[13] Nan WANG,Lv-hua JIN,Ling ZHANG,Rong LIN,Hai-lin YANG. The Effect of Signal Peptides on the Expression of Leucine Dehydrogenase and Enzymatic Properties in Bacillus subtilis[J]. China Biotechnology, 2018, 38(4): 46-53.
[14] Cun-duo TANG,Hong-ling SHI,Yue MA,Peng-ju DING,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases[J]. China Biotechnology, 2018, 38(2): 30-37.
[15] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.