Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (5): 86-93    DOI:
    
Strain Screening and Culture Condition Optimization for the Enantioselectively Hydrolysis of(3R) - 2-Carboxyethyl-3-Cyano-5-Methylhexanoic Acid Ethyl Ester
WU Wei, YANG Li-rong, XU Gang, WU Jian-ping
Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML   PDF(1203KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Using (R, S)-2-carboxyethyl-3-cyano-5-methyl-hexanoic acid ethylester (rac-CCMAE) as sole carbon source, Pseudomonas sp. CGMCC No. 4184 was isolated which can enantioselectively hydrolyze (R)-CCMAE to (3R)-2-carboxyethyl-3-cyano-5-methylhexanoic acid (3R-CCMA) with eep of over 90%. The optimal temperature and pH for the production of hydrolase by Pseudomonas CGMCC No. 4184 were 30℃ and 7.4. Single-factor experiment, Plackett-Burman design and response surface methodology were applied subsequently to optimize the fermentation medium. After optimization, the enzyme activity increased from 15.92U/L to 33.43 U/L (about 2.1 fold). By using resting cell catalysis system, (S)-CCMAE were successfully prepared with the conversion of 56.3% and ees of 98.3% after 48 h under the condition of 5g/L CCMAE, 8g/L (cell dry weight) resting cells, 20ml 0.1mol/L phosphate buffer (pH 7.4), 30℃ and 200r/min.



Key words(R, S)-2-carboxyethyl-3-cyano-5-methylhexanoic acid ethylester      Pseudomonas      Enantioselective      Resting cells     
Received: 20 December 2010      Published: 27 May 2011
ZTFLH:  TQ225.4  
Cite this article:

WU Wei, YANG Li-rong, XU Gang, WU Jian-ping. Strain Screening and Culture Condition Optimization for the Enantioselectively Hydrolysis of(3R) - 2-Carboxyethyl-3-Cyano-5-Methylhexanoic Acid Ethyl Ester. China Biotechnology, 2011, 31(5): 86-93.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I5/86


[1] Lauria-Horner B A, Pohl R B. Pregabalin: a new anxiolytic. Expert Opinion on Investigational Drugs, 2003, 12(4):663-672.

[2] Selak I. Pregabalin (Pfizer). Curr Opin Investig Drugs, 2001, 2(6):828-834.

[3] Sammis G M, Jacobsen E N. Highly enantioselective, catalytic conjugate addition of cyanide to alpha, beta-unsaturated Imides. Journal of the American Chemical Society, 2003, 125(15):4442-4443.

[4] Burk M J, de Koning P D, Grote T M, et al. An enantioselective synthesis of (S)-(+)-3-amino-methyl-5-methylhexanoic acid via asymmetric hydrogenation. Journal of Organic Chemistry, 2003, 68(14):5731-5734.

[5] Yuen P W, Kanter G D, Taylor C P, et al. Enatioselective synthesis of PD144723- A potent stereospecific anticonvulsant. Bioorganic & Medicinal Chemistry Letters, 1994, 4(6):823-826.

[6] Hoekstra M S, Sobieray D M, Schwindt M A, et al. Chemical development of CI-1008, an enantiomerically pure anticonvulsant. Organic Process Research & Development, 1997, 1(1):26-38.

[7] Bryans J S, Chessum N E A, Huther N, et al. Metal-catalysed radical cyclisations leading to N-heterocycles: new approaches to gabapentin and pulchellalactam. Tetrahedron, 2003, 59(33):6221-6231.

[8] Grote T M, Huckabee B K, Mulhern T, et al. (S)-3-(Aminomethyl)-5-methyl hexanoic acid prepn. - useful as anticonvulsant, in process that does not require expensive reagents or low temps. US, WO 9640617-A. 1996.

[9] Burns M P, Weaver J K, Wong J W, et al. Preparation of cyanocarboxylic acid, useful to synthesize e.g. pregabalin, comprises contacting succinonitrile with an enzyme catalyst having nitrilase activity in a reaction medium and recovering (3S) isomer.US, WO 2005100580-A1. 2005.

[10] Martinez C A, Hu S, Dumond Y, et al. Development of a chemoenzymatic manufacturing process for pregabalin. Organic Process Research & Development, 2008, 12(3):392-398.

[11] Hedvati L, Fishman A. The use of enzymatic resolution for the preparation of intermediates of pregabalin.US, WO 2007143113-A2.2007.

[12] 王婷, 吴坚平, 杨立荣等. 普瑞巴林手性中间体的合成工艺研究.应用化学, 2010, 39(2): 183-188. Wang, T, Wu, J P, Yang, L R, et al.Applied Chemical Industry, 2010, 39(2):183-188.

[13] Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17):3389-3402.

[14] Tang X J, He G Q, Chen Q H, et al. Medium optimization for the production of thermal stable beta-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology. Bioresource Technology, 2004, 93(2):175-181.

[15] Jia B, Jin Z H, Mei L H. Medium optimization based on statistical methodologies for pristinamycins production by Streptomyces pristinaespiralis. Applied Biochemistry and Biotechnology, 2008, 144(2):133-143.

[16] Chen C S, Fujimoto Y, Girdaukas G, et al. Quantitative-analyses of biochemical kinetic resolutions of enantiomers. Journal of the American Chemical Society, 1982, 104(25):7294-7299.

[17] Lin S F, Chiou C M, Tsai Y C. Effect fo triton X-100 on alkaline lipase production by Pseudomonas pseudoalcaligenes F-111. Biotechnology Letters, 1995, 17(9):959-962.

[18] Helisto P, Korpela T. Effects of detergents on activity of microbial lipases as measured by the nitrophenyl alkanoate esters method. Enzyme and Microbial Technology, 1998, 23(1-2):113-117.

[19] Liu Y Y, Xu J H, Hu Y. Enhancing effect of Tween-80 on lipase performance in enantioselective hydrolysis of ketoprofen ester. Journal of Molecular Catalysis B: Enzymatic, 2000, 10(5):523-529.

[20] Lie F, Chen Y Z, Wang Z S, et al. Enantioselective benzylic hydroxylation of indan and tetralin with Pseudomonas monteilii TA-5. Tetrahedron Asymmetry, 2009, 20(10):1206-1211.

[1] ZHA Dai-ming, ZHANG Bing-huo, LI Han-quan, YAN Yun-jun. Research Advances in Molecular Biology of Pseudomonas Lipases[J]. China Biotechnology, 2015, 35(9): 114-121.
[2] . Strain Screening and Culture Condition Optimization for the Enantioselectively Hydrolysis of (3R) - 2-Carboxyethyl-3-Cyano-5-Methylhexanoic Acid Ethyl Ester[J]. China Biotechnology, 2011, 31(05): 0-0.