Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (06): 52-57    DOI:
    
Cloning and functional characterization of cDNA sequence encoding the MAP kinase kinase AtPBS2 gene of the fungus Alternaria tenuissima
Download: HTML   PDF(1545KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An Alternaria tenuissima cDNA yeast expression library was constructed The MAPK kinase PBS2 was isolated from an Alternaria tenuissima cDNA expression library, designated as AtPBS2. It has a size of 2,492 bases in length, encoded a protein of 683 amino acids. The AtPbs2p amino acid sequence shows 52%、52%、49% and 47% identities with AfPbs2p (XP_752961) of Aspergillus fumigatu、MGCH7 (XP_001522946) of Magnaporthe grisea and ScHog1p (EDN63254) of Saccharomyces cerevisiae, respectively. AtPBS2 cDNA sequences could complement the functions of S. cerevisiae ScPBS2 genes in sodium tolerance, suggesting a functional HOG pathway exists in A. tenuissima, AtPBS2 gene was involved in the stress adaptation regulation of A. tenuissima.



Key wordsPBS2gene;MAPK kinase;Alternaria tenuissima;HOG passway     
Received: 04 January 2009      Published: 02 July 2009
ZTFLH:  Q785  
Cite this article:

FENG Fei-1, JI Chun-Yan-2, YANG Xiu-Fen-3, CENG Hong-Mei-3, QIU De-Wen-3. Cloning and functional characterization of cDNA sequence encoding the MAP kinase kinase AtPBS2 gene of the fungus Alternaria tenuissima. China Biotechnology, 2009, 29(06): 52-57.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I06/52

[1] Chenkp W,Snaar Jagalska B E. Signal perception and transduction the role of protein kinases. Biochimica et biophysica Acta, 1999, 1449(1): 1~24 [2] Dickman M B,Yarden O. Serine/threonine protein kinases and phosphatases in filamentious fungi. Fungal Genetics and Biology, 1999, 26(2): 99~117 [3] Mizoguchi T, Ichimura K,Shinozaki K. Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends Biotech, 1997, 15(1): 15~19 [4] Xu J R. MAP Kinases in fungal pathogens fungal. Genetics and Biology, 2000, 31(3): 137~152 [5] 杨洪强,贾文锁,黄丛林,等. 蛋白磷酸化参与湖北海棠根系中水分胁迫诱导的ABA积累. 科学通报,2001,46(1):50~53 Yang H Q, Jia W S, Huang C L. Chinese Science Bulletin, 2001, 46(1): 50~53 [6] 杨洪强,接玉玲. 植物MAPK及其在病原信号传递中的作用. 植物病理学报,2003,33(1):8~13 Yang H Q,Jie Y L. Acta Phytopathologica Sinica, 2003,33(1): 8~13 [7] 吴雪昌,胡森杰,钱凯先. 酵母HOG-MAPK途径. 细胞生物学杂志,2005,27(3):247~252 Wu X C, Hu S J, Qian K X. Chinese Journal of Cell Biology, 2005, 27(3): 247~252 [8] Banuett F,Herskowitz I. Identification of fuz7, an Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and-independent steps in the fungal life cycle. Genes Dev, 1994, 8(12): 1367~1378 [9] Xu J R,Hamer J E. MAP kinase and cAM Psignaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev, 1996, 10(21): 2696~2706 [10] 李晖. 稻瘟菌诱导性水稻蛋白激酶基因的cDNA 克隆及其功能研究[D]. 北京:中国农业大学,农学与生物技术学院,2002 Li H. cDNA Cloning and Functional Analysis of Rice Protein Kinase Induced by Magnaporthe grisea. Beijing: China Agricultural University, College of Agricultural & Biotechnology, 2002 [11] Kothe G O,Free S J. The isolation and characerization of nrc-1 and nrc-2, two genes encoding protein kinase that control growth and development in Neurospora crassa. Genetics, 1998, 149(1): 117~130 [12] Welsh D T. Ecological significance of compatible solute accumulation by microorganisms: from single cells to global climate. FEMS Microbiol Rev, 2000, 24(3): 263~290 [13] Alepuz P, de Nadal E, Zapater M, et al. Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. J EMBO, 2003, 22(10): 2433~2442 [14] Kim Y K, Kawano T, Li D X, et al. A mitogen-activated protein kinase required for induction of cytokinesis and appressorium formation by host signals in the conidia of Colletotrichum gloeosporioides. The Plant Cell, 2000, 12(8): 1331~1343 [15] Takano Y, Kikuchi T, Kubo Y, et al. The Collectotrichum lagenarium MA Pkinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Molecular Plant-Microbe Interaction, 2000, 13(4): 374~383 [16] Xue C Y, Park G, Choi W, et al. Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. The Plant Cell, 2002, 14(9): 2107~2119 [17] Delgado-Jarana J, Sousa S, Redondo J, et al. Characterization of the Stress response. In: Trichoderma harzianum: Role of HOG Kinase and cAM PPathways. 7th European Conference on Fungal Genetics Copenhagen, 2004,103 [18] Lugauskas A, Prosychevas I, Levinskaite L, et al. Physical and chemical aspects of long-term bio-deterioration of some polymers and composites. Environmental Toxicology, 2004, 19(4): 318~328 [19] 龙松华,张宁,邱德文,等. Gateway技术构建交链孢菌JH505 cDNA文库. 微生物学报,2005,45(6):963~965 Long S H, Zhang N, Qiu D W, et al.Acta Microbiologica Sinica. 2005, 45(6): 963~965 [20] Gustin M C, Jacobus A, Alexander M, et al. MA Pkinase pathways in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 1998, 62(4): 1264~1300 [21] Dixon K P, Xu J R, Smirnoff N, et al. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. The Plant Cell, 1999, 11(10): 2045~2058 [22] Bahn Y, Kojima K, Cox G, et al. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol Biol Cell, 2005, 16(5): 2285~2300 [23] Kruppa M,Calderone R. Two-component signal transduction in human fungal pathogens. FEMS Yeast Res, 2006, 6(2): 149~159 [24] Monge R, Roman E, Nombela C, et al. The MA Pkinase signal transduction network in Candida albicans. Microbiol, 2006, 152(4): 905~912
[1] Wen-juan CHAI,Qi YANG,Guo-jing LI,Rui-gang WANG. CiMYB15 from Caragana Intermedia Positively Regulates Flavonoids Metabolism of Arabidopsis[J]. China Biotechnology, 2018, 38(10): 8-19.
[2] You-hui TIAN,Xiang-yuan WAN. Cytobiology and Molecular Genetics Research Methods on Maize Anther Development[J]. China Biotechnology, 2018, 38(1): 88-99.
[3] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[4] Zi SHI,Wei SONG,Jiu-ran ZHAO. Application of Male Sterility in Crop Heterosis[J]. China Biotechnology, 2018, 38(1): 126-134.
[5] Ai-guo SU,Wei SONG,Shuai-shuai WANG,Jiu-ran ZHAO. Advance on Cytoplasmic Male Sterility and Fertility Restoration Genes in Maize[J]. China Biotechnology, 2018, 38(1): 108-114.
[6] Shuang-shuang LIU,Suo-wei WU,Li-qun RAO,Xiang-yuan WAN. Molecular Mechanism and Application Analysis of Genic Male Sterility in Maize[J]. China Biotechnology, 2018, 38(1): 100-107.
[7] Zhi-yuan FU,Yong-tian QIN,Ji-hua TANG. Reviews of Photo- or/and Thermo-sensitive Genic Male Sterile Gene in Major Crops[J]. China Biotechnology, 2018, 38(1): 115-125.
[8] YU Zi-qing, WU Suo-wei, ZHANG Dan-feng, LIU Shuang-shuang, XIE Ke, RAO Li-qun, WAN Xiang-yuan. Genetic Analysis and Gene Mapping of Recessive Genic Male Sterility14 (ms14) Mutant in Maize[J]. China Biotechnology, 2016, 36(10): 8-14.
[9] CHEN Xiao-feng, HU Pan, LI Yan-song, GUO Xing, ZOU De-ying, LIU Nan-nan, LU Shi-ying, ZHOU Yu, LIU Zeng-shan, LI Zhao-hui, REN Hong-lin. Molecular Cloning, Prokaryotic Expression and Polyclonal Antibody Preparation of Peroxiredoxin 6 (Prdx6) from Mus musculus[J]. China Biotechnology, 2016, 36(3): 11-16.
[10] ZHOU Qian, ZHAO Hui-xin, LI Ping-ping, ZENG Wei-jun, LI Yan-hong, GE Feng-wei, ZHAO Jun-jie, ZHAO He-ping. De novo Characterization of the Seed Transcriptome of Lepidium apetalum Willd[J]. China Biotechnology, 2016, 36(1): 38-46.
[11] NIE Li-zhen, YU Xiao-xia, LI Guo-jing, SUN Jie, JIANG Chao, YU Zhuo. Study on Transgenic Potato Contained AtCDPK1 Gene Drived by Rd29A Promoter[J]. China Biotechnology, 2015, 35(11): 13-22.
[12] GAO Rui-ping, CHENG Long-bin, LI Zhen-qiu. A Simple and Rapid Single Primer PCR Method for Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(5): 61-65.
[13] ZHENG Li-juan, CHEN Shao-yun, XU Gang, WU Jian-ping, YANG Li-rong. Engineering E.coli for Isobutanol Production by Two-promoter Vectors[J]. China Biotechnology, 2013, 33(8): 67-74.
[14] LIU Pei-lei, KANG Ding-ming, LI Ning. Analysis of Risk Communication for Transgenic Biotechnology in China[J]. China Biotechnology, 2011, 31(8): 145-149.
[15] SONG Xiu-peng, WU Bo, SHEN Pei-hong, JIANG Cheng-jian, TIAN Dan-dan, TANG Xian-lai. Location of Some Genes Related to One Carbon Metabolism in Methylobacterium sp. MB200 and Cloning of mtdA and mtdB Genes[J]. China Biotechnology, 2011, 31(02): 50-55.