Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (2): 59-64    DOI: 10.13523/j.cb.20140210
    
The Artificial Aptazyme Based Riboswitch
WANG Jia-wen1,2, FENG Jing-xian1,2, LIN Jun-sheng1,2, DIAO Yong1,2
1. Institute of Molecular Medicine, Quanzhou 362021 China;
2. School of Biomedical Sciences Huaqiao University, Quanzhou 362021, China
Download: HTML   PDF(750KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The artificial aptazyme based riboswitch has emerged as a powerful tool for regulating gene expression in recent years. The most common aptazyme consists of a hammerhead ribozyme and an aptamer, it is simply a piece of structured RNA and easy to design. As a cis-acting element, aptazyme riboswitch can recognize specific targets and exert effective influence on translation without the help of protein co-factor through irreversible self-cleavage in vivo, which makes it a versatile platform functions in various cells. The most popular approach to generate an aptazme based riboswitch is to rationally cojoin a ribozyme to an aptamer and screen with a high throughout method after integrated into mRNA. With considerable magnitude of on-off control and rapid induction as well as concise regulation, this riboswitch will have important application in in vivo sensing, gene therapy and biological processor.

Key wordsAptamer      Modular assembly      Gene regulation      Hammerhead ribozyme     
Received: 03 December 2013      Published: 25 February 2014
ZTFLH:  Q789  
Cite this article:

WANG Jia-wen, FENG Jing-xian, LIN Jun-sheng, DIAO Yong. The Artificial Aptazyme Based Riboswitch. China Biotechnology, 2014, 34(2): 59-64.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140210     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I2/59

[1] Robertson M P, Ellington A D. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat Biotechnol, 1999, 17(1): 62-66.
[2] Tang J, Breaker R R. Rational design of allosteric ribozymes. Chem Biol, 1997, 4(6): 453-459.
[3] Birikh K R, Heaton P A, Eckstein F. The structure, function and application of the hammerhead ribozyme. Eur J Biochem, 1997, 245(1): 1-16.
[4] Khvorova A, Lescoute A, Westhof E, et al. Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol, 2003, 10(9): 708-712.
[5] Nelson J A, Shepotinovskaya I, Uhlenbeck O C. Hammerheads derived from sTRSV show enhanced cleavage and ligation rate constants. Biochemistry-Us, 2005, 44(44): 14577-14585.
[6] Win M N, Smolke C D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A, 2007, 104(36): 14283-14288.
[7] Win M N, Smolke C D. Higher-order cellular information processing with synthetic RNA devices. Science, 2008, 322(5900): 456-460.
[8] Wieland M, Gfell M, Hartig J S. Expanded hammerhead ribozymes containing addressable three-way junctions. Rna, 2009, 15(5): 968-976.
[9] Wieland M, Hartig J S. Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem Int Ed Engl, 2008, 47(14): 2604-2607.
[10] Tang J, Breaker R R. Mechanism for allosteric inhibition of an ATP-sensitive ribozyme. Nucleic Acids Res, 1998, 26(18): 4214-4221.
[11] Soukup G A, Breaker R R. Engineering precision RNA molecular switches. Proc Natl Acad Sci U S A, 1999, 96(7): 3584-3589.
[12] Breaker R R. Engineered allosteric ribozymes as biosensor components. Curr Opin Biotechnol, 2002, 13(1): 31-39.
[13] Wieland M, Benz A, Klauser B, et al. Artificial ribozyme switches containing natural riboswitch aptamer domains. Angew Chem Int Ed Engl, 2009, 48(15): 2715-2718.
[14] Ogawa A, Maeda M. An artificial aptazyme-based riboswitch and its cascading system in E. coli. Chembiochem, 2008, 9(2): 206-209.
[15] Werstuck G, Green M R. Controlling gene expression in living cells through small molecule-RNA interactions. Science, 1998, 282(5387): 296-298.
[16] Wei K Y, Chen Y Y, Smolke C D. A yeast-based rapid prototype platform for gene control elements in mammalian cells. Biotechnol Bioeng, 2013, 110(4): 1201-1210.
[17] Chen Y Y, Jensen M C, Smolke C D. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc Natl Acad Sci U S A, 2010, 107(19): 8531-8536.
[18] Link K H, Guo L, Ames T D, et al. Engineering high-speed allosteric hammerhead ribozymes. Biol Chem, 2007, 388(8): 779-786.
[19] Liang J C, Chang A L, Kennedy A B, et al. A high-throughput, quantitative cell-based screen for efficient tailoring of RNA device activity. Nucleic Acids Res, 2012, 40(20): e154.
[20] Auslander S, Ketzer P, Hartig J S. A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. Mol Biosyst, 2010, 6(5): 807-814.
[21] Liang J C, Bloom R J, Smolke C D. Engineering biological systems with synthetic RNA molecules. Mol Cell, 2011, 43(6): 915-926.
[22] Nomura Y, Kumar D, Yokobayashi Y. Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb), 2012, 48(57): 7215-7217.
[1] LIU Shao-jin,FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng. Market Analysis and Countermeasures of Nucleic Acid Drugs in China[J]. China Biotechnology, 2021, 41(7): 99-109.
[2] Hai-yin LV,Teng-fei WANG,Ren-jun PEI. Progress in Aptamer Based Tumor Immunotherapy[J]. China Biotechnology, 2019, 39(6): 55-61.
[3] SU Yi,JIANG Ling-li,LIN Jun-sheng. Characterization of the Affinity Between Low Molecular Weight Targets and Their Aptamers[J]. China Biotechnology, 2019, 39(11): 96-104.
[4] Hao QIU,Ming-shu WANG,An-chun CHENG. γPNA——A New Type of High Efficient Peptide Nucleic Acid[J]. China Biotechnology, 2018, 38(2): 75-81.
[5] YI Yu, WANG Min-jun, MEI Jian-feng, CHEN Jian-shu, ZHANG Yan-lu, YING Guo-qing. Construction and Characterization of Electrochemical Biosensor based on Endotoxin Aptameer[J]. China Biotechnology, 2017, 37(8): 46-50.
[6] HE Min-yu, RAN Hai-tao. Aptamer Conjugated Nanomaterials for Targeted Cancer Therapeutics[J]. China Biotechnology, 2015, 35(4): 86-91.
[7] TANG De-ping, MAO Ai-hong, WANG Fang, ZHANG Hong, WANG Li, LIAO Shi-qi. Targeted Delivery of siRNA Mediated by Aptamer Modified Liposome[J]. China Biotechnology, 2015, 35(1): 54-60.
[8] ZHOU Ni, CHEN Dan, YAO Dong-sheng, XIE Chun-fang, LIU Da-ling. Development of An Electrochemical Aptasensor Basic on the ssDNA Aptamer of Ractopamine[J]. China Biotechnology, 2014, 34(1): 42-49.
[9] CHEN Dan, YAO Dong-sheng, XIE Chun-fang, LIU Da-ling. Development of an Aptasensor for Electrochemical Detection of Tetracycline[J]. China Biotechnology, 2013, 33(11): 56-62.
[10] CHEN Wu, LI Ding-jun, DING Yan, ZHANG Xu, XIAO Qi-ming, ZHOU Qing-ming. Progress in the Resistance Mechanisms of Pathogenic Microorganism against Antimicrobial Peptide[J]. China Biotechnology, 2012, 32(05): 97-106.
[11] DONG Yuan-yuan, LI Hai-yan, LI Xiao-kun, YANG Shu-lin. Molecular Expression and Regulation of MicroRNA[J]. China Biotechnology, 2011, 31(12): 109-114.
[12] SHU Xian-Can, SONG Feng-Bin. Advances of Study on Arbuscular Mycorrhizal Symbiotic Phosphate Transporter in Plants[J]. China Biotechnology, 2009, 29(12): 108-113.
[13] . Construction and expression in vitro of RU486-inducible regulatory vector[J]. China Biotechnology, 2007, 27(6): 1-5.