Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (03): 61-65    DOI:
    
The Effect of Aeration on the Growth and Lipid Content on Chlorella vulgaris LICME002 in the Applied Alumina Gas Distributor Bubbling Column Photobioreactor
ZHANG Qi1, GAO Zhen2, HUANG He1,2, LIANG Xi-hai1, JI Xiao-jun1, ZHENG Hong-li1, YIN Feng-wei1
1. Nanjing University of Technology, Jiangsu 210009, China;
2. State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu 210009, China
Download: HTML   PDF(591KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In the study of photobioreactor, gas distributor has great influence to the growth of microalgae, especially in the bubbling column reactor.The effect of the gas-flow rate and CO2 concentration on the biomass, chlorophyll a, and lipid accumulation of Chlorella vulgaris LICME002 in the 5L bubbling photobioreactor with a alumina gas distributor. The results showed that the 3% CO2 is the optimum condition for biomass, chlorophyll a, oil accumulation. When the CO2 concentration exceeded 6%, the algae's parameters decreased significantly. With the analysis of the algae's parameters at 0.1vvm,0.4vvm,0.7vvm, 1.0vvm, and the gas-flow rate 0.4vvm is the best one. Results showed that the optimum gas-flow rate and CO2 concentration, the microalgae biomass can achieve 1.52 g/L, oil content achieved 31.5%.



Key wordsGas distributor      Gas-flow rate      Chlorella vulgaris      CO2      Photobioreactor      Lipid     
Received: 14 October 2010      Published: 01 April 2011
ZTFLH:  Q949.2  
Cite this article:

ZHANG Qi, GAO Zhen, HUANG He, LIANG Xi-hai, JI Xiao-jun, ZHENG Hong-li, YIN Feng-wei. The Effect of Aeration on the Growth and Lipid Content on Chlorella vulgaris LICME002 in the Applied Alumina Gas Distributor Bubbling Column Photobioreactor. China Biotechnology, 2011, 31(03): 61-65.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I03/61

[1] Degen J, Uebele A, Retze A, et al. A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. Biotechnol,2001, 92(2):89-94.
[2] Barbosa J, Janssen M, Ham N, et al. Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng,2003, 82(2):170-179.
[3] Vega-Estrada J, Montes-Horcasitas M C, Domínguez-Bocanegra AR, et al. Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift. photobioreactor under aeration conditions avoiding cell damage. Appl Microbiol Biotechnol,2005, 68(1):31-35.
[4] Buwa V V, Ranade V V. Dynamics of gas-liquid flow in a rectangular bubble column: experiments and single/multi-group CFD simulations. Chem Eng,2002, 57(22-23):4715-4736.
[5] Buwa V V, Ranade V V. Characterization of dynamics of gas-liquid flows in rectangular bubble columns. A.I.Ch.E. J, 2003,12(50):2394-2407.
[6] Abraham M, Sawant S B. Effect of sparger design on the hydrodynamics and mass transfer characteristics of a bubble column. Indian Chem Eng, 1989,1:31-38.
[7] Li G, Yang X G, Dai G. CFD simulation of effects of the configuration of gas distributors on gas-liquid flow and mixing in a bubble column. Chemical Engineering Science,2009, 64(24):5104-5116.
[8] Li J M, Cheng L H, Xu X H. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology,2010, 101(17):6797-6804.
[9] Takagi M, Karseno, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella Cells. J Biosci Bioeng, 2006, 101(3):223-226.
[10] Chiu S Y, et al. Reduction of CO2 by a high-density culture of Chlorella sp.in a semicontinuous photobioreactor. Bioresource Technology,2008, 99(9):3389-3396.
[11] Hu H, Gao K. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources.Biotechnol Lett,2003, 25(5):421-425.
[12] Watanabe Y, Ohmura N, Saiki H. Isolation and determination of cultural characteristics of microalgae which functions under CO2 enriched atmosphere. Energy Conversion Management,1992, 33 (5-8):545-552.
[13] Pronina N A, Kodama M, Miyachi S. Changes in intracellular pH values in various microalgae induced by raising CO2 concentrations. XV Int Botanical Cong,1993:419.
[14] Pulles Martin P J, Hans J. van Gorkoma, et al. Verschoora Primary reactions of Photosystem II at low pH. 2. Light-induced changes of absorbance and electron spin resonance in spinach chloroplasts. Biochimica et Biophysica Acta - Bioenergetics,1976, 1(440):98-106.
[15] Iwasaki I, Kurano N, Iwasaki I S M, et al. Effects of high-CO2 stress on photosystem II in a green alga, Chlorococcum littorale, which has a tolerance to high CO2.Journal of Photochemistry and Photobiology,1996, 3(36):327-332.
[16] Kaplan A, Reinhold L. CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol, 1999,50:539-570.
[17] Giordano M, Beardall J, Raven J A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol, 2005, 56:99-131.
[18] Lee J S, Shin C S, Park S C. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresource Technol, 1999, 68(3):269-273.
[19] Zhang Y H, Yang S S. Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot Bull Acad Sinca, 2003, 44(1):43-52
[20] de Morais M G, Costa J A V. Biofixation of carbon dioxide by Spirulina sp and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotechnol, 2007, 129(3):439-445.
[21] de Morais M G, Costa J A V. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conv Manag,2007, 48(7):2169-2173.
[22] Livne A, Sukenik A . Lipid Synthesis and A bundance of Acetyl CoA Carboxylase in Isochrysis galbana (Prymnesiophyceae) Following Nitrogen Starvation. Plant Cell Physiol,1992, 33(8):1175-1181.
[23] Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and genemanipulation for plant breeding. Bioscience, Biotechnology and Biochemistry,2004, 68 (6):1175-1184.
[24] Sukenik A, Line A.Variations in lipid and fatty acid content in relation to acetyl CoA carboxylase in the marine prymnesiophyte Isochrysis galbana. Plant Cell Physiol,1991, 32(3):371-378.
[25] Kinney A J. Genetic modification of the storage lipids of plants. Curr Opin Biotechnol,1994, 5(2):144-151.
[26] Falkowski P G, Raven J A. Aquatic photosynthesis. London: Blackwater Science,1997.375.
[27] Zilinskas B G, Zilinskas B B. Light absorption, emission and photosynthesis. Algal physiology and biochemistry. Oxford: Blackwell Scientiic Publications,1974.346-390.
[28] Prokop A, Erickson L E. Photobioreactors. In: Prokop A, Erickson L E, editiors. Bioreactor system design. New York: Marcel Dekker, Inc,1995.441-477.
[29] Merchuk J C. Shear Effects on Suspended Cells . Adv Biochem Eng,1991, 44: 65-95.
[30] Michels M H A, van der Goot A J, Norsker N H, et al. Effects of shear stress on the microalgae Chaetoceros muelleri. Bioprocess Biosyst Eng,2010, 33(8):921-927.
[31] Csordas A, Wang J K . An integrated photobioreact or and foam fractionation unit for the growth and harvest of Chaetoceros spp. in open systems. Aquacultural Engineering,2004, 30(1-2):15-30.

[1] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[2] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[3] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[4] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[5] Zhi-jin WEI,Xiao LI,Hao-nan WANG,Yong-hao YIN,Li-jun XI,Bao-sheng GE. Enhanced Biomass Production and Lipid Accumulation by Co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp.[J]. China Biotechnology, 2019, 39(7): 56-64.
[6] Qi-zai WANG,Hong-chao WANG,Hai-qin CHEN,Jian-xin ZHAO,Hao ZHANG,Wei CHEN,Yong-quan CHEN. Effects of MTHFD1 Overexpression on Lipid Synthesis in the Oleaginous Fungus, Mortierella alpina[J]. China Biotechnology, 2018, 38(9): 12-18.
[7] Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments[J]. China Biotechnology, 2018, 38(8): 1-9.
[8] Zheng-san ZUO,Xiao-man SUN,Lu-jing REN,He HUANG. Improvement of Lipid Accumulation in Microalgae by Novel Cultivation Strategies[J]. China Biotechnology, 2018, 38(7): 102-109.
[9] YUAN Xiao-chuan, LIAN Fang, ZHAO Yin-nong, CHEN Chuang, HUANG Shan, LI Ke-zhi, ZENG Ai-ping, HE Jian-bo, WU Guo-bin. Elevated Temperature Induced Acceleration of Electrophoretic Tissue Clearing Process of Rat Liver Tissue[J]. China Biotechnology, 2017, 37(9): 65-70.
[10] ZHANG Ya-guang, ZHANG Chuan-bo, LU Wen-yu. Progress of Biosynthesis of Sophorolipids and Its Derivatives Production in Starmerella bombicola[J]. China Biotechnology, 2017, 37(9): 134-140.
[11] MENG Ying-ying, YAO Chang-hong, LIU Jiao, SHEN Pei-li, XUE Song, YANG Qing. Review and Evaluation of Microalgal Components Determination Methods[J]. China Biotechnology, 2017, 37(7): 133-143.
[12] XIA Qian-jun, WANG Fei, LI Xun. Review of Yarrowia lipolytica for SCO Production[J]. China Biotechnology, 2017, 37(3): 99-105.
[13] WANG Li-qun, LU Hong-zhong, CHU Ju, WANG Yong-hong. Dissolved Carbon Dioxide Effects on Glucoamylase Synthesis of Aspergillus niger in Batch and Chemostat Cultures[J]. China Biotechnology, 2017, 37(1): 27-37.
[14] WANG Ya nan, SHEN Hong wei, YANG Xiao bing, ZHAO Zong bao. Effects of Lipid Production by Rhodosporidium toruloides under Conditions with Limitation of Different Nutrient Elements[J]. China Biotechnology, 2016, 36(11): 16-22.
[15] WANG Hong chao, ZHANG Chen, CHEN Dian ning, QIAO Ju yuan, CHEN Hai qin, GU Zhen nan, ZHANG Hao, CHEN Wei, CHEN Yong quan. Cloning, Expression and Function Analysis of Methylenetetrahydrofolate Dehydrogenase from Mortierella alpina[J]. China Biotechnology, 2016, 36(11): 23-29.