Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (10): 0-0    DOI:
    
Advance in the Production of Optically Pure D-Lactic Acid by Microbial Fermentation
Download: HTML   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  D-lactic acid (D-lactate) is an important chiral intermediate and one raw material for PLA production. Due to the scarcity of petroleum resources and the improvement of environmental awareness, polylactic acid industry is rapidly expanding, which increases the demand for production of D-lactate. However, low optically pure D-lactate has limitations in many of its end uses. Microbial fermentation can produce high optically pure D-lactate. In resent years, quite a lot of research works have been done in this field. Properties of D-lactate and its applications in industrial production, chemical processing and PLA production are simply introduced in this paper. The main purpose here is to summarize the current situation of D-lactate producing strains, including lactic acid bacteria, Escherichia coli, Corynebacterium glutamicum and yeast, etc. Studies on these microorganisms indicated that the approach of metabolic engineering has been widely used to make D-lactate producing strains which have higher production level, yield, productivity and optical purity, lower by-product levels, and improved ability in utilizing more simplified, cheaper and easier available materials. Metabolic pathway reconstruction by metabolic engineering and genetic manipulation is a development trend of screening D-lactate producing strains. At last, some prospects about D-lactate fermentation were made.

Key wordsD-lactic acid      Optical purity      Microbial fermentation      Metabolic engineering     
Received: 14 April 2010      Published: 19 October 2010
Fund:  Sino-South Africa Cooperation Program
Cite this article:

. Advance in the Production of Optically Pure D-Lactic Acid by Microbial Fermentation. China Biotechnology, 2010, 30(10): 0-0.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I10/0

[1] 王博彦, 金其荣. 发酵有机酸生产与应用手册. 北京: 中国轻工业出版社, 2000. 337-389. Wang B Y, Jin Q R. Production and application of fermentation organic acid. Beijing: China Light Industry Press, 2000. 337-389. [2] 丁子建. 芽孢乳杆菌发酵葡萄糖制备D(-)-乳酸的研究. 南京: 南京工业大学, 制药与生命科学学院, 2004. Ding Z J. Study on fermentative production of D(-) – lactic acid from glucose by Sporolactobacillus sp.. Nanjing: Nanjing University of Technology, College of Life Science and Pharmacy, 2004. [3] 金其荣, 金丰秋. 乳酸衍生物发展应用新动向. 山西食品工业, 2002, 3: 2-5. Jin Q R, Jin F S. Shanxi Food Industry, 2002, 3: 2-5. [4] 张高华, 吴晓芳. 用手性液谱柱法拆分及骠马农药旋光对映体含量的测定. 检验检疫学刊, 1998, 8(1): 20-25. Zhang G F, Wu X F. Journal of Inspection and Quarantine, 1998, 8(1): 20-25. [5] 胡永红, 管珺, 杨文革, 等. 发酵法生产D-乳酸的研究进展. 食品与发酵工业, 2007, 33(12): 99-103. Hu Y H, Guan J, Yang W G, et al. Food and Fermentation Industries, 2007, 33(12): 99-103. [6] 宋谋道, 余艺华, 张邦华, 等. 乳酸、羟基乙酸均聚物及共聚物的合成与结构表征. 离子交换与吸附, 1995, 11(3): 245-252. Song D M, Yu Y H, Zhang B H, et al. Ion Exchange and Adsorption, 1995, 11(3): 245-252. [7] 王晨宏, 李弘, 王玉琴. 聚乳酸类生物降解性高分子材料研究进展. 离子交换与吸附, 2001, 17(4): 369-378. Wang C H, L H, Wang Y Q. Ion Exchange and Adsorption, 2001, 17(4): 369-378. [8] 郝国庆. 可降解高分子材料聚乳酸综述. 太原科技, 2006, 10: 13-14. Hao G Q. Taiyuan Science and Technology, 2006, 10: 13-14. [9] Wee Y J, Kim J N, Ryu H W. Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology, 2006, 44(2): 163-172. [10] 赵鑫, 赵良启, 谢红. 发酵生产L-乳酸的现状与展望. 山西化工, 2005, 25(1): 15-19. Zhao X, Zhao L Q, Xie H. Shanxi Chemical Industry, 2005, 25(1): 15-19. [11] Vijayakumar J, Aravindan R, Viruthagiri T. Recent trends in the production, purification and application of lactic acid. Chemical and Biochemical Engineering Quarterly, 2008, 22(2): 245-264. [12] Okano K, Tanaka T, Ogino C, et al. Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Applied Microbiology and Biotechnology, 2009, 85(3): 413-423. [13] 乔长晟. L-乳酸高产突变株的诱变选育及发酵条件的研究. 天津: 天津轻工业学院, 食品工程系, 2001. Qiao C S. Tianjin: Tianjin Institute of Light Industry, Department of Food Engineering, 2001. [14] 王海燕, 刘铭, 王化军, 等. 乳酸生产中的微生物代谢工程. 过程工程学报, 2006, 6(3): 512-516. Wang H Y, Liu M, Wang H J, et al. The Chinese Journal of Process Engineering, 2006, 6(3): 512-516. [15] Kosaki. Production of high optical purity D-lactic acid: US, 5466588. 1995-11-4. [16] de Boer J P, Teixeira de Mattos M J, Neijssel O M. D(?)-lactic acid production by suspended and aggregated continuous cultures of Bacillus laevolacticus. Applied Microbiology and Biotechnology, 1990, 34(2):149-153. [17] Demirici A, Pometto III A L. Enhanced production of D(?)-lactic acid by mutants of Lactobacillus delbrueckii ATCC 9649. Journal of Industrial Microbiology and Biotechnology, 1992, 11(1):23-28. [18] Xu T T, Bai Z Z, Wang L J, et al. Breeding of D(?)-lactic acid high producing strain by low-energy ion implantation and preliminary analysis of related metabolism. Applied Biochemistry and Biotechnology, 2008, 160(2): 314-321. [19] Calabia B P, Tokiwa Y. Production of D-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii. Biotechnology Letters, 2007, 29(9):1329-1332. [20] Benthin S, Villadsen J. Production of optically pure D-lactate by Lactobacillus bulgaricus and purification by crystallisation and liquid/liquid extraction. Applied Microbiology and Biotechnology, 1994, 42(6): 826-829. [21] Fukushima K, Soqo K, Miura S, Kimura Y. Production of D-lactic acid by bacterial fermentation of rice starch. Macromolecular Bioscience, 2004, 4(11): 1021-1027. [22] Okano K, Zhang Q, Shinkawa S, et al. Efficient production of optically pure D-lactic acid from raw corn starch by using genetically modified L-lactate dehydrogenase gene-deficient and α–amylase-secreting Lactobacillus plantarum strain. Applied and Environmental Microbiology, 2009, 75(2): 462-467. [23] Yá?ez R, Moldes A B, Alonso J L, et al. Production of D(-)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnology Letters, 2003, 25(14):1161-1164. [24] Yá?ez R, Alonso J L, Parajó J C. D-Lactic acid production from waste cardboard. Journal of Chemical Technology and Biotechnology, 2005, 80(1): 76-84. [25] Tanaka K, Komiyama A, Sonomoto K, et al. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Applied Microbiology and Biotechnology, 2002, 60(1-2): 160-167. [26] Okano K, Yoshida S, Tanaka T, et al. Homo D-lactic acid fermentation from arabinose by redirection of phosphoketolase pathway to pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Applied and Environmental Microbiology, 2009, 75(15): 5175-5178. [27] Hofvendahl K, Hahn-H?gerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 2000, 26(2-4): 87-107. [28] Zhu Y, Eiteman M A, DeWitt K, et al. Homolactate fermentation by metabolically engineered Escherichia coli strains. Applied and Environmental Microbiology, 2007, 73(2): 456-464. [29] Datsenko K A,Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Science of the United States of America, 2000, 97(12):6640-6645. [30] Dym O, Pratt E A, Ho C, et al. The crystal structure of D-lactate dehydrogenase, a peripheral memvrane respiratory enzyme. Proceedings of the National Academy of Science of the United States of America, 2000, 97(17): 9413-9418. [31] Booth I R, Ferguson G P, Miller S, et al. Bacterial production of methlglyoxal: a survival strategy or death by misadventure?. Biochemical Society Transactions, 2003, 31(6): 1406-1408. [32] Grabar T B, Zhou S, Shanmugam K T, et al. Methlglyoxal bypass identified as source of chiral contamination in L(+) and D(-)-lactate fermentations by recombinant Escherichia coli. Biotechnology Letters, 2006, 28(19): 1527-1535. [33] Zhou S D, Causey T B, Hasona A, et al. Production of Optically Pure D-Lactic Acid in Mineral Salts Medium by Metabolically Engineered Escherichia coli W3110. Applied and Environmental Microbiology, 2003, 69(1): 399-407. [34] Bunch P K, Jan F M, Lee N, et al. The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology, 1997, 143(1): 187-195. [35] Yang Y T, San K Y. Redistribution of metabolic fluxes in Escherichia coli with fermentative lactate dehydrogenase overexpression and deletion. Metabolic Engineering, 1999, 1(2): 141-152. [36] Chang D E, Jung H C, Rhee J S, et al. Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Applied and Environmental Microbiology, 1999, 65(4): 1384-1389. [37] Zhu J, Shimizu K. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli. Applied Microbiology and Biotechnology, 2004, 64(3): 367-375. [38] Zhu J, Shimizu K. Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metabolic Engineering, 2005, 7(2): 104-115. [39] Shuka V B, Zhou S, Yomano L P, et al. Production of D(-)-lactate from sucrose and molasses. Biotechnology Letters, 2004, 26(9): 689-693. [40] Zhou S, Yomano L P, Shanmugam K T, et al. Fermentation of 10% (w/v) sugar to D(-)-lactate by engineered Escherichia coli B. Biotechnology Letters, 2005, 27(23-24): 1891-1896. [41] Zhou S, Grabar T B, Shanmugam K T, et al. Betaine tripled the volumetric productivity of D(-)-lactate by Escherichia coli B strain SZ132 in mineral salts medium. Biotechnology Letters, 2006, 28(9): 671-676. [42] Zhou S, Shanmugam K T, Yomano L P, et al. Fermentation of 12% (w/v) glucose to 1.2 M lactate by Escherichia coli B strain SZ194 using mineral salts medium. Biotechnology Letters, 2006, 28(9): 663-670. [43] Martinez A, Grabar T B, Shanmugam K T, et al. Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnology Letters, 2007, 29(3): 397-404. [44] Okino S, Inui M, Yukawa H. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Applied Microbiology and Biotechnology, 2005, 68(4): 475-480. [45] Okino S, Suda M, Fujikura K, et al. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Applied Microbiology and Biotechnology, 2008, 78(3): 449-454. [46] Ishida N, Suzuki T, Tokuhiro K, et al. D-lactic acid production by metabolically engineered Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2006, 101(2):172-177. [47] Rajgarhia V, Dundon C A, Olson S, et al. Methods and materials for the production of D-lactic acid in yeast. United States Patent Application, 20040029256, 2004-2-12. [48] Nakahra T, Terasawa M, Yugawa H. Production of D-Lactic acid and genus Pseudomonas bacterium. JP 4271787. 1992-09-28. [49] Hirayama S, Ueda R. Production of optically pure D-lactic acid by Nannochlorum sp. 26A4. Applied Biochemistry and Biotechnology, 2004, 119(1): 71-78.
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[3] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[4] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[5] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[6] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[7] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[8] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[9] ZHAO Xiu-li, ZHOU Dan-dan, YAN Xiao-guang, WU Hao, CAIYIN Qing-gele, LI Yan-ni, QIAO Jian-jun. Regulation and Application in Metabolic Engineering of Bacterial Small RNAs[J]. China Biotechnology, 2017, 37(6): 97-106.
[10] GAO Jiao-jiao, YANG Shu-lin. Advances in the Production of High Molecular Weight Hyaluronic Acid by Microbial Fermentation[J]. China Biotechnology, 2017, 37(5): 118-125.
[11] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[12] LI Xiao-bo, LIU Xue, ZHAO Guang-rong. Advances on Flavonoid Glycosides Production of Engineered Microorganisms[J]. China Biotechnology, 2016, 36(8): 105-112.
[13] GAO Cui-juan, LIN Carol Sze-ki, QI Qing-sheng. Production of Medium-chain-length Polyhydroxyalkanoates by Recombinant Yarrowia lipolytica Through Metabolic Engineering[J]. China Biotechnology, 2016, 36(5): 53-58.
[14] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[15] FANG Li xia, CAO Ying xiu, SONG Hao. Engineering Escherichia coli to Synthesize Free Fatty Acids: A Recent Progress[J]. China Biotechnology, 2016, 36(11): 90-97.