Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (08): 1-7    DOI:
    
Expression,Purification of PTB Domain of Human APPL2 and Screen for Its Peptide Ligands
LIANG Ning1,2 SHI Zhu-liang1,2 WANG Dong-ye1 WEI Guo-wei1 KONG Xiang-ping3
CHEN Chang-you1 |LIU Jin-song1 XU Ai-min1,4 WU Dong-hai1,2
1 Guangzhou Institute of Biomedicine and Health,Chinese Academy of Science,Guangzhou510663,China
2 Department of Life Science,University of Science and Technology of China,Hefei230026,China
3 Liver Disease Center of PLA,PLA 458 Hospital,Guangzhou510602,China
4 Department of Medicine,University of Hong Kong,Hong Kong999077,China
Download: HTML   PDF(679KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

APPL proteins, including APPL1 and APPL2, are important messengers between cell membrane and cell nucleus and are essential to cell proliferation. In this study, we expressed and purified the PTB domain of human APPL2 (hAPPL2) in Escherichia coli. Phage display technology was then used to screen for the interacting peptides with this domain. After 3 rounds of panning, 48 single phage plaques were randomly picked and ELISA analysis was performed. Two 7-mer peptides, ERLPFFY and YLTSPKH were found to bind to the PTB domain of hAPPL2 in a specific manner. Both wild type and mutant forms of P3-GST fusion protein, with each amino acid substituted by alanine, were prepared and evaluated for binding capacity with hAPPL2 PTB by ELISA. Results showed that each residue was indispensible in the binding between this peptide to hAPPL2 PTB domain. This study shed light on structural interactions between the PTB domain of APPL2 and the binding proteins.



Key wordsAPPL2      PTB       Expression      Purification      Phage Display     
Received: 04 March 2009      Published: 28 July 2009
ZTFLH:  Q819  
Corresponding Authors: Ning Liang   
Cite this article:

LIANG Ning- Dan-Zhu-Liang- Wang-Dong-Ye- Wei-Guo-Wei- Kong-Xiang-Beng- Chen-Chang-You- Liu-Jin-Song- Xu-Ai-Min- Tun-Dong-Hai. Expression,Purification of PTB Domain of Human APPL2 and Screen for Its Peptide Ligands. China Biotechnology, 2009, 29(08): 1-7.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I08/1

[1]   Miaczynska M,Christoforidis S,Ginder A,et al.APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment.Cell,2004,116: 445~456
[2]   Mitsuuchi Y,Johnson S W,Sonoda G,et al.Identification of a chromosome 3p14.321.1 gene,APPL,encoding an adaptor molecule that interacts with the oncoproteinserine/threonine kinase AKT2.Oncogene,1999,18: 4891~4898
[3]   Liu J,Yao F,Wu R,et al.Mediation of the DCC apoptotic signal by DIP13α.J Biol Chem,2002,277: 26281~26285
[4]   Nechamen C A,Thomas R M,Dias J A.APPL1,APPL2,Akt2 and FOXO1a interact with FSHR in a potential signaling complex.Mol Cell Endocrinol,2007,260262: 93~99
[5]   Varsano Dong M Q,Niesman I,Gacula H,et al.GIPC is recruited by APPL to peripheral TrkA endosomes and regulates TrkA trafficking and signaling,Mol Cell Biol,2006,26: 8942~8952
[6]   Mao X,Kikani C K,Riojas R A,et al.APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function.Nat Cell Biol,2006,8: 516~523
[7]   Charest A,Wagner J,Jacob S,et al.Phosphotyrosineindependent binding of SHC to the NPLH sequence of murine proteintyrosine phosphatasePEST: Evidence for extended phosphotyrosine binding/phosphotyrosine interaction domain recognition specificity.J Biol Chem,1996,271: 8424~8429
[8]   Paz K,Voliovitch H,Hadari Y R,et al.Interaction between the insulin receptor and its downstream effectors: Use of individually expressed receptor domains for structure/function analysis.J Biol Chem,1996,271: 6998~7003
[9]   Fiore F,Zambrano N,Minopoli G,et al.The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer′s amyloid precursor protein.J Biol Chem,1995,270: 30853~30856
[10]   Margolis B,Borg J P,Straight S,et al.The function of PTB domain proteins.Kidney International,1999,56: 1230~1237
[11]   Smith G P.Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface.Science,1985,228 (4705): 1315~1317
[12]   Wang B,Yang H,Liu Y C,et al.Isolation of highaffinity peptide antagonists of 1433 proteins by phage display.Biochemistry,1999,38: 12499~12504
[13]   Henriksson M L,Troller U,Hallberg B.1433 proteins are required for the inhibition of Ras by exoenzyme S.Biochem J,2000,349: 697~701
[14]   Adey N B,Kay B K.Identification of calmodulinbinding peptide consensus sequences from a phagedisplayed random peptide library.Gene,1996,169: 133~134
[15]   Nevalainen L T,Aoyama T,Ikura M,et al.Characterization of novel calmodulinbinding peptides with distinct inhibitory effects on calmodulindependent enzymes.Biochem J,1997,321: 107~115
[16]   Goodson R J,Doyle M V,Kaufman S E,et al.Highaffinity urokinase receptor antagonists identified with bacteriophage peptide display.Proc Natl Acad Sci,1994,91: 7129~7133
[17]   Yanofsky S D,Baldwin D N,Butler J H,et al.High affinity type I interleukin 1 receptor antagonists discovered by screening recombinant peptide libraries.Proc Natl Acad Sci,1996,93: 7381~7386
[18]   Wrighton N C,Farrell F X,Chang R,et al.Small peptides as potent mimetics of the protein hormone erythropoietin.Science,1996,273: 458~464
[19]   Cwirla S E,Balasubramanian P,Duffin D J,et al.Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine.Science,1997,276: 1696~1699
[20]   Sarrias M R,Whitbeck J C,Rooney I,et al.Inhibition of herpes simplex virus gD and lymphotoxinalpha binding to HveA by peptide antagonists.J Virol,1999,73: 5681~5687
[21]   Takenaka I M,Leung S M,McAndrew S J,et al.Hsc70binding peptides selected from a phage display peptide library that resemble organellar targeting sequences.J Biol Chem,1995,270: 19839~19844
[22]   Sauk J J,Coletta R D,Norris K,et al.Binding motifs of CBP2 a potential cell surface target for carcinoma cells.J Biol Chem,2000,78: 251~263
[23]   Fairbrother W J,Christinger H W,Cochran A G,et al.Novel peptides selected to bind vascular endothelial growth factor target the receptorbinding site.Biochemistry,1998,37: 17754~17764
[24]   BinetruyTournaire R,Demangel C,Malavaud B,et al.Identification of a peptide blocking vascular endothelial growth factor (VEGF)mediated angiogenesis.EMBO J,2000,19: 1525~1533
[25]   Cochran A G.Antagonists of proteinprotein interactions.Chem Biol,2000,7: R85~94
[26]   HydeDeRuyscher R,Paige L A,Christensen D J,et al.Detection of smallmolecule enzyme inhibitors with peptides isolated from phagedisplayed combinatorial peptide libraries.Chem Biol,2000,7: 17~25
[27]   Chen C D,Wang C S,Huang Y H,et al.Overexpression of CLIC1 in human gastric carcinoma and its clinicopathological significance.Proteomics,2007,7: 155~167
[28]   Diane R B,Curtis A P,Seiji T,et al.Neuropilins in neoplasms: Expression,regulation,and function.Cell Research,2006,312: 584~593
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.
[3] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[4] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[5] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[6] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.
[7] YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight[J]. China Biotechnology, 2021, 41(11): 23-31.
[8] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[9] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[10] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[11] DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy[J]. China Biotechnology, 2020, 40(8): 24-32.
[12] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[13] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[14] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[15] CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response[J]. China Biotechnology, 2020, 40(7): 41-50.