Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (8): 47-53    DOI:
    
The Determination and Control of Coproporphyrin Ⅲ in Vitamin B12 Fermentation by Pseudomonas denitrificans
WANG Ze-jian, ZHAO Lin-lin, CHU Ju, ZHANG Ying-ping, ZHANG Si-liang
State Key Laboratory of Bioreactor Engineering,East China University of Science and Technology,Shanghai 200237,China
Download: HTML   PDF(1207KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The accumulation of coproporphyrin Ⅲ,which is byproduct generated in vitamin B12 fermentation of Pseudomonas denitrificans,greatly affect the biosynthesis of vitamin B12 and the extraction in industrial production. An effective method for determining coproporphyrin Ⅲ concentration directly after suitable treatment of the fermentation broth. Furthermore,the influence of oxygen supply levels,carbon dioxide concentrations and pH on coproporphyrin Ⅲ biosynthesis were investigated,the optimal control strategy was implemented in 120 m3 industrial bioreactor. The results revealed that higher oxygen supply promoted the coproporphyrin Ⅲ accumulation,controlling the inlet carbon dioxide concentration at 8.6±0.8% and pH at 7.0±0.12 could greatly inhibit the coproporphyrin Ⅲ biosynthesis,and the vitamin B12 production increased for 15% than that of control.



Key wordsVitamin B12      Fermentation      Coproporphyrin Ⅲ      Determination      Control     
Received: 31 March 2011      Published: 25 August 2011
ZTFLH:  Q819  
Cite this article:

WANG Ze-jian, ZHAO Lin-lin, CHU Ju, ZHANG Ying-ping, ZHANG Si-liang. The Determination and Control of Coproporphyrin Ⅲ in Vitamin B12 Fermentation by Pseudomonas denitrificans. China Biotechnology, 2011, 31(8): 47-53.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I8/47


[1] 罗伟,郝常明. 维生素B12的研究及其进展. 中国食品添加剂,2002,3:15-18.Luo W,Hao C M.China Food Additives,2002,3:15-18.

[2] Martens J H,Barg H,Warren M J,et al. Microbial production of vitamin B12. Appl Microbiol Biotechnol,2002,58:275-285.

[3] Scott A I,Roessner C A,Stolowich N J,et al. Biosynthesis of vitamin B12. Discovery of the enzymes for oxidative ring contraction and insertion of the fourth methyl group. FEBS Lett,1993,331:105-108.

[4] Warren M J,Raux E,Schubert H L,et al. The biosynthesis of adenosylcobalamin(vitamin B12). Nat Prod Rep,2002,19:390-412.

[5] Li K T,Liu D H,Li Y L,et al. An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans. Bioprocess and Biosystems Engineering,2008,31:605-610.

[6] Li K T,Liu D H,Li Y L,et al. Improved large-scale production of vitamin B12 by Pseudomonas denitrificans with betaine feeding. Bioresource Technology,2008,99:8516-8520.

[7] Demain A L,White R F. Porphyrin overproduction by Pseudomonas denitrificans:essentiality of betaine and stimulation by ethionine. J Bacteriol,1971,107:456-460.

[8] Warren M J. Finding the final pieces of the vitamin B12 biosynthetic jigsaw. Proc Natl Acad Sci U S A,2006,103:4799-4800.

[9] Jermyn M A. Increasing the sensitivity of the anthrone method for carbohydrate. Anal Biochem,1975,68:332-335.

[10] Plakunov V K,Shelemekh O V. Mechanisms of oxygen regulation in microorganisms. Microbiology,2009,78:535-546.

[11] Wang Z J,Wang H Y,Li Y L,et al. Improved vitamin B12 production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresource Technology,2010,101:2845-2852.

[12] Roessner C A,Santander P J,Scott A I,et al. Multiple biosynthetic pathways for vitamin B12:Variations on a central theme.In:Vitamins & Hormones.Litwack G,Begley T.San Diego:Academic Press,2001,61:267-297.

[13] Ferrentino G,Ferrari G,Poletto M,et al.,Microbial inactivation kinetics during high-pressure carbon dioxide treatment:nonlinear model for the combined effect of temperature and pressure in apple juice. J Food Sci,2008. 73(8):389-395.

[14] Wang D,Li Q,Li W L,et al. Improvement of succinate production by overexpression of a cyanobacterial carbonic anhydrase in Escherichia coli. Enzyme and Microbial Technology,2009,45:491-497.

[15] El-Sabbagh N,Harvey L M,McNeil B.Effects of dissolved carbon dioxide on growth,nutrient consumption,cephalosporin C synthesis and morphology of Acremonium chrysogenum in batch cultures. Enzyme and Microbial Technology,2008, 42:315-324.

[16] 王慧媛,王泽建,黄明志,等.CO2对脱氮假单胞菌发酵生产维生素B12的影响. 华东理工大学学报(自然科学版),2010,36:499-505. Wang H Y,Wang Z J,Huang M Z,et al. Journal of East China University of Science and Technology(natural science edition),2010,36:499-505.

[1] SUN Yao,QIAO Meng-wei,LIU Shi-yu,GONG Dian-liang,SONG Jin-zhu. Research Progress on the Inhibitory Effect of Lactobacillus on Pathogenic Pseudomonas[J]. China Biotechnology, 2021, 41(8): 103-109.
[2] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[3] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[4] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[5] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[6] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[7] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[8] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[9] Wen-jie CAO,Xiang-yuan XIONG,Yan-chun GONG,Zi-ling LI,Yu-ping LI. The Application of Polymersomes in Drug Delivery System[J]. China Biotechnology, 2019, 39(6): 62-72.
[10] Jian YAN,Lu-qiang JIA,Jian DING,Zhong-ping SHI. Enhancing pIFN-α Production by Pichia pastoris via Periodic Methanol Induction Control[J]. China Biotechnology, 2019, 39(6): 32-40.
[11] Xuan-tong GUO,Chun-bo ZHANG. Research Progress of Optogenetic Techniques[J]. China Biotechnology, 2019, 39(3): 87-96.
[12] LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody[J]. China Biotechnology, 2019, 39(10): 105-110.
[13] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[14] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[15] Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9[J]. China Biotechnology, 2019, 39(1): 46-54.