Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (06): 6-11    DOI:
    
Adult Stem Cells Harvested by Implanting Gelatin Sponges into Spatium Intermusculare
WU Xiao-yun1, WANG Shi-li1, MU Zhong-xiang2
1. Key Laboratory for Biotech-Drugs Ministry of Health Shandong Medicinal Biotechnology Center, Jinan 250062, China;
2. Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
Download: HTML   PDF(881KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new method to harvest stem cells was established by implanting biomaterials into mice. Gelatin Sponges (GS) were implanted into the spatium intermusculare of mice hind limbs. A large number of migrating cells were isolated from the transplanted biomaterials at 12 days after implanting. The characteristics of adherent cells were similar to that of bone marrow (BM) stem cells, including morphology, proliferation potential and multilineage differentiation capacity. The frequency of CFU-F in GS (82.2±10.6/105) was much higher than in BM (43.7±7.4/106) (P<0.05). In additional, BM transplantation demonstrated that stem cells in the GS originated from the PB. Moreover, it is possible for autologous cell therapy, so this method may be a promising alternative for the clinical application.



Key wordsGelatin Sponge      Adult stem cells      Cell culture      Differentiation     
Received: 23 November 2010      Published: 28 June 2011
ZTFLH:  Q819  
Cite this article:

WU Xiao-yun, WANG Shi-li, MU Zhong-xiang. Adult Stem Cells Harvested by Implanting Gelatin Sponges into Spatium Intermusculare. China Biotechnology, 2011, 31(06): 6-11.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I06/6

[1] Sherwood R I, Christensen J L, Conboy I M, et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell, 2004, 119(4):543-554.
[2] Phillips M I, Tang Y L. Genetic modification of stem cells for transplantation. Adv Drug Deliv Rev, 2008, 60(2):160-172.
[3] Trounson A. New perspectives in human stem cell therapeutic research. BMC Med, 2009, 7:29.
[4] Niemeyer P, Fechner K, Milz S, et al. Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials, 2010, 31(13):3572-3579.
[5] de Villiers J A, Houreld N, Abrahamse H. Adipose derived stem cells and smooth muscle cells: implications for regenerative medicine. Stem Cell Rev Rep, 2009, 5(3):256-265.
[6] Wu X, Wang S, Chen B, et al. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res, 2010, 340(3):549-567.
[7] Caplan A I. The mesengenic process. Clin Plast Surg, 1994, 21(3):429-435.
[8] Huang J I, Kazmi N, Durbhakula M M, et al. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res, 2005, 23(6):1383-1389.
[9] 安新玲,韩金祥,王世立. 重组人骨形态发生蛋白-7活性检测方法的建立. 中国生物制品学杂志, 2010, 23(12):1357-1360. An X L, Han J X, Wang SL. Chinese J of Biological, 2010, 23(12):1357-1360.
[10] Li J, Wang S, Han J, et al. Cells captured from spatium intermusculare by porous material exhibit the characteristics of stem cells. Histochem Cell Biol, 2008, 130(4):741-748.
[11] Badylak S F, Freytes D O, Gilbert T W. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater, 2009, 5(1):1-13.
[12] 丁宁,王世立,韩金祥,等. 组织工程材料捕获成体干细胞的影响因素研究. 中国医药生物技术, 2009, 4(3):171-176. Ding N, Wang S L, Han J X, et al. Chinese Medicinal Bintechnology, 2009, 4(3):171-176.
[13] 李海生, 陈金武, 朱玲玲,等. 持续低氧增强人骨髓间充质干细胞体外增殖. 基础医学与临床, 2005, 25(3):268-271. Li H S, Chen J W, Zhu L L. Basic & Clinical Medicine, 2005, 25(3):268-271.
[14] Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc, 2009, 4(1):102-106.
[15] 王心蕊,何旭,王医术,等. 低氧促进人骨髓间充质干细胞迁移的实验研究. 中国免疫学杂志, 2006, 22(12):1100-1102. Wang X R, He X, Wang Y S, et al. Chinese J of Immunology, 2006, 22(12):1100-1102.
[16] Lennon D P, Edmison J M, Caplan A I. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol, 2001, 187(3):345-355.
[17] Peault B, Rudnicki M, Torrente Y, et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther, 2007, 15(5):867-877.
[18] Issarachai S, Priestley G V, Nakamoto B, et al. Cells with hemopoietic potential residing in muscle are itinerant bone marrow-derived cells. Exp Hematol, 2002, 30(4):366-373.
[19] Chapel A, Bertho J M, Bensidhoum M, et al. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med, 2003, 5(12):1028-1038.

[1] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[2] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[3] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[4] GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2020, 40(3): 21-30.
[5] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[6] ZHU Ying,FAN Meng-tian,LI Ju-qiong,CHEN Bin,ZHANG Meng-hao,WU Jing-hong,SHI Qiong. Effect of Chemokine Receptor CX3CR1 on Osteogenic Differentiation of Human Aortic Valve Interstitial Cells[J]. China Biotechnology, 2019, 39(8): 7-16.
[7] Yu CHENG,Qiong SHI,Li-qin AN,Meng-tian FAN,Gai-gai HUANG,Ya-guang WENG. BMP7 Gene Silencing Inhibits Osteogenic Differentiation of Porcine Arotic Valve Interstitial Cells Induced by Osteogenic Induction Medium[J]. China Biotechnology, 2019, 39(5): 63-71.
[8] Xin LI,Zhong-li ZHAO,Xiao-tong LUO,Yang CAO,Li-chun ZHANG,Yong-sheng YU,Hai-guo JIN. Research Progress of in the Inducers Stimulating in Differentiation of iPS Cells into Male Germ Cells[J]. China Biotechnology, 2019, 39(4): 94-100.
[9] Yu-lei GUO,Liang TANG,Rui-qiang SUN,You LI,Yi-jun CHEN. High-Throughput Micro Bioreactor Development for Biopharmaceuticals[J]. China Biotechnology, 2018, 38(8): 69-75.
[10] Wen-wen SHI,Lei ZHANG. Current Research of Micro Mechanical Environmental Effects on Mesenchymal Stem Cells’ Differentiation[J]. China Biotechnology, 2018, 38(8): 76-83.
[11] Guang-ran LI,Wei WANG. Research Progress of Small Molecule Compounds in Neural Differentiation of Stem Cells[J]. China Biotechnology, 2018, 38(3): 76-80.
[12] Hui-nan ZHANG,Meng-meng LI,Jing WEN,Shu-yi WU,Shi-jian LAN,Zhong-li LUO. Self-assembling Peptide R2I4R2 for Skin Wounds Repairing[J]. China Biotechnology, 2018, 38(2): 7-12.
[13] ZHONG Peng-qiang,LIU Bei-zhong,YAO Juan-juan,LIU Dong-dong,YUAN Zhen,LIU Jun-mei,CHEN Min,ZHONG Liang. Knock-down of ACTL6A Promote Differentiation of NB4 Cells via the Notch1 Signaling Pathway[J]. China Biotechnology, 2018, 38(12): 1-6.
[14] Qiong YANG,Ling-hui WANG,Hao GU,Jing-jing DU,Jin-yuan LIU,Shun-hua ZHANG,Li ZHU. The Effect of miR-196a-5p on Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2018, 38(11): 9-17.
[15] Ting AN,Jing JI,Yu-rong WANG,Zhi-gang MA,Gang WANG,Qian LI,Dan YANG,Song-hao ZHANG. Analysis of the Transformation Efficiency and Induced Differentiation of Lilium brownii Scales[J]. China Biotechnology, 2018, 38(1): 25-31.