Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (01): 85-92    DOI:
    
Advances and Perspectives on Genetic Modification of Hevea brasiliensis
ZOU Zhi,YANG Li-fu,WANG Zhen-hui,YUAN Kun
Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Rubber Biology,Ministry of Agriculture, Danzhou 57173,China
Download: HTML   PDF(531KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As the major commercial source of natural rubber, Hevea brasiliensis attracts much attention. However, the heterozygous nature, long breeding cycle are strong limitations for conventional breeding. While genetic engineering, which can be used to widen the germplasm base and produce desirable agronomic traits quickly and efficiently, offers a viable alternative approach to complement traditional breeding. Comprehensive analysis indicates that in the past two decades, with calli derived from immature anther or integumental tissues of immature fruit as receptors, both biolistic and Agrobacterium-mediated transformation methods were employed for developping rubber genotypes with improved latex yield, tolerance to tapping panel dryness syndrome, producing high-value recombinant proteins, etc. Being recalcitrant to tissue culture, the transformation efficiency of Hevea is comparatively low, and the procedures are still needed to optimize. Finally, breeding objectives and strategies to improve transformation efficiency were also proposed in the review.



Key wordsHevea brasiliensis      genetic modification      Agrobacterium-mediated transformation      Biolistic transformation     
Received: 28 August 2009      Published: 27 January 2010
Corresponding Authors: zou zhi     E-mail: zouzhi2008@126.com
Cite this article:

JU Zhi, YANG Li-Fu, WANG Zhen-Hui, YUAN Kun. Advances and Perspectives on Genetic Modification of Hevea brasiliensis. China Biotechnology, 2010, 30(01): 85-92.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I01/85

[1] Kitayama M, Takahashi M, Surzycki S J, et al. Transformation of callus tissue from Hevea brasiliensis and Jasminium officinale.Plant Physiol(Suppl), 1990, 93: 46. 
[2] Arokiaraj P, Jones H, Cheong K F, et al. Gene Insertion into Hevea brasiliensis. Plant Cell Rep, 1994, 13: 425431. 
[3] Arokiaraj P,Wan Abdul Rahaman W Y. Agrobacteriummediated transformation of Hevea cells derived from in vitro and in vivo seedling cultures. J Nat Rubb Res, 1991, 6: 5561. 
[4] Arokiaraj P, Jones H, Jaafar H, et al. Agrobacteriummediated transformation of Hevea anther calli and their regeneration into plantlets. J Nat Rubber Res, 1996, 11(2): 7786. 
[5] Arokiaraj P, Yeang H Y, Cheong K F, et al. CaMV 35S promoter directs βglucuronidase expression in the laticiferous system of transgenic Hevea brasiliensis (rubber tree). Plant Cell Rep, 1998, 17: 621625. 
[6] Montoro P, Teinseree N, Rattana W, et al. Effect of exogenous calcium on Agrobacterium tumefaciensmediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Rep, 2000, 19: 851855. 
[7] 刘志昕,邓晓东,魏源文,等反义Hevein基因载体构建及橡胶树遗传转化研究初报热带作物学报(增刊),2000,12(21):102107. Liu Z X, Deng X D, Wei Y W, et al.Chinese J Tropical Crops, 2000, 12(21), 102107. 
[8] Rattana W, Teinseree N, Tadakittisarn S. Characterization of factors involved in tissue growth recovery and stability of GUS activity in rubber tree (Hevea brasiliensis) friable calli transformed by Agrobacterium tumefaciens. Thai J Agric Sci, 2001, 34: 34. 
[9] Arokiaraj P, Rueker F, Oberymayr E, et al. Expression of human serumal bumin in transgenic Hevea brasiliensis. J Rubber Res, 2002, 5: 157166. 
[10] Yeang H Y, Arokiaraj P, Hafsah J, et al. Expression of a functional recombinant antibody fragment in the latex of transgenic Hevea brasiliensis. J Rubber Res, 2002, 5: 215225. 
[11] Sobha S, Sushamakumari S, ThanseemI, et al. Genetic transformation of Hevea brasiliensis with the gene coding for superoxide dismutase with FMV 34S promoter. Curr Sci, 2003a, 85: 4552. 
[12] Sobha S, Sushamakumari S, Thanseem I , et al. Abiotic stress induced overexpression of superoxide dismutase enzyme in transgenic Hevea brasiliensis. Indian J Nat Rubber Res, 2003b, 16: 4552.
[13] Montoro P, Rattana W, PujadeRenaud V, et al. Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium. Plant Cell Rep, 2003, 21: 10951102. 
[14] Jayashree R, Rekha K, Venkatachalam P, et al. Genetic transformation and regeneration of rubber tree (Hevea brasiliensis Muell Arg) transgenic plants with a constitutive version of an antioxidative stress superoxide dismutase gene. Plant Cell Rep, 2003, 22: 201209. 
[15] Blanc G, Baptiste C, Oliver G, et al. Efficient Agrobacterium tumefaciensmediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Mull Arg. plants. Plant Cell Rep, 2006, 24: 724733. 
[16] Rekha K, Jayashree R, Kumary Jayasree P, et al. An efficient protocol for Agrobacteriummediated genetic transformation in rubber tree (Hevea brasiliensis). Plant Cell Biotechno and Mol Biol, 2006, 7: 155158. 
[17] 王颖,陈雄庭,张秀娟,等基因枪法将GAI基因导入巴西橡胶的研究热带亚热带植物学报,2006,14(3):179182. Wang Y, Chen X T, Zhang X J, et al.J Tropical Subtropical Bot, 2006, l4(3): 179182. 
[18] Montoro P, Lagier S, Baptiste C, et al. Expression of the HEV2.1 gene promoter in transgenic Hevea brasiliensis. Plant Cell Tiss Organ Cult, 2008, 94(1): 5563. 
[19] 孙爱花,李哲,黄天带.橡胶树药的培养植物生理学通讯,2006,42(4):785789 Sun A H, Li Z, Huang T D.Plant Physiol Com, 2006, 42(4): 785789. 
[20] 黄德贵,陈曼雅,吕美娜,等巴西橡胶花药培养的研究福建热带科技,1982(2):111. Huang D G, Chen M Y, Lv M N, et al.Fujian Sci and Techno Tropical Crops, 1982(2): 111. 
[21] Kumari J P, Asokan M P, Sobha S, et al. Somatic embryogenesis and plant regeneration form immature anthers of Hevea brasiliensis (Muell. Arg.). Curr Sci, 1999, 76: 12421245. 
[22] Kumari J P, Thulaseedharan A. Gibberllic acid regulated embryo induction and germination in Hevea brasiliensis (Muell. Arg.). Indian J Nat Rubber Res, 2001, 14: 106111. 
[23] Kumari J P, Vinoth T. Optimization of parameters affecting somatic embryogenesis in Hevea brasiliensis. Indian J Nat Rubber Res, 2001,14: 2029. 
[24] Carron M P, Enjalric E. Somatic embryogenesis from inner integument of the seed of Hevea brasiliensis (Muell. Arg.). Comptes Rendus de L'Academic des Sciences, Paris Series III, 1985, 300: 653658. 
[25] Blanc G, Lardet L, Martin A. Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis. J Exp Bot, 2002, 53(373): 14531462. 
[26] EI Hadrami I, Carron M P, d’Auzac J. Influence of exogenous hormone on somatic embryogenesis in Hevea brasiliensis. Ann Bot, 1991, 67: 511515. 
[27] Etienne H, Berger A, Carron M P. Water status of callus from Hevea brasiliensis during induction of somatic embryogenesis. Physiol Plantarum, 1991, 82: 213218. 
[28] Montoro P, Etienne H, Carron M P. Effect of calcium on callus friability and somatic embryogenesis in Hevea brasiliensis Mull. Arg. Relations with callus mineral nutrition, nitrogen metabolism and water parameters. J Exp Bot, 1995, 46: 255261. 
[29] Etienne H, Montoro P, MichauxFerriere N, et al. Effects of desiccation, medium osmolarity and abscisic acid on the maturation of Hevea brasiliensis somatic embryos. J Exp Bot, 1993a, 44: 16131619. 
[30] Etienne H, Sotta B, Montoro P. Relationship between exogenous growth regulators and endogeous indole3aectic acid and abscisic acid in the expression of somatic embryogenesis in Hevea brasiliensis (Muell. Arg.). Plant Sci, 1993b, 88: 9196. 
[31] Etienne H, Lartaud M, MichauxFerriere N, et al. Improvement of somatic embryogenesis in Hevea brasiliensis (Muell. Arg.) using temporary immersion technique. In Vitro Cell DevPl, 1997a, 33: 8187. 
[32] Etienne H, Lartaud M, Carron M P, et al. Use of calcium to optimize long term proliferation of friable calluses and plant regeneration in Hevea brasiliensis (Muell. Arg.). J Exp Bot, 1997b, 48: 129137. 
[33] Veisseire P, Cailloux F,Coudret A. Effect of conditioned media on the somatic embrogenesis of Hevea brasiliensis. Plant Physiol Bioch, 1994a, 32: 571576. 
[34] Veisseire P, Linossier L, Coudret A. Effect of absicsic acid and cytokinins on the development of somatic embryos in Hevea brasiliensis. Plant Cell Tiss Organ Cult, 1994b, 39: 219223. 
[35] Lardet L, Martin F, Dessailly F, et al. Effect of exogenous calcium on postthaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Mull. Arg.). Plant Cell Rep, 2007, 26: 559569. 
[36] EI Hadrami I, d’Auzac J. Effects of polyamine biosynthetic inhibitors on somatic embryogenesis and cellular polyamines in Hevea brasiliensis. J Plant Physiol,1992, 140: 3336. 
[37] Linossier L, Veisseire P, Cailloux. Effect of abscisic acid and high concentrations of PEG on Hevea brasiliensis somatic embryos development. Plant Sci, 1997, 124: 183191. 
[38] 邹智,杨礼富,王真辉,等橡胶树中橡胶的生物合成与调控植物生理学通讯,2009,45(12):12311238. Zou Z,Yang L F,Wang Z H,et al.Plant Physiol Com, 2009,45(12):12311238. 
[39] Wititsuwannakul R. Diurnal variation of 3hydroxy3methylglutaryl coenzyme A reductase activity in latex of H. brasiliensis and its relation to rubber content. Experientia,1986,42, 4445. 
[40] Arokiaraj P. Towards molecular genetic improvement of rubber yield in transgenic Hevea brasiliensis Muell Arg. PhD Thesis,1995. England: University of London. pp:102126. 
[41] Ko J H, Chow K S, Han K H. Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (Para rubber tree). Plant Mol Bio, 2003, 53: 479492. 
[42] Priya P, Venkatachalam P, Thulaseedharan A. Molecular cloning and characterization of the rubber elongation factor gene and its promoter sequence from rubber tree (Hevea brasiliensis), A gene involved in rubber biosynthesis. Plant Sci, 2006, 171: 470480. 
[43] Hao B Z, Wu J L. Laticifer differentiation in Hevea brasiliensis, induction by exogenous jasmonic acid and linolenic acid. Ann Bot, 2000, 85: 3747.

[1] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[2] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[3] XU Xiao, CHENG Chi, YUAN Kai, XUE Chuang. Research Progress of Cellulase Production in Trichoderma reesei[J]. China Biotechnology, 2021, 41(1): 52-61.
[4] SHEN Ping, WU Yu-hua, LIANG Jin-gang, LU Xin, ZHANG Qiu-yan, WANG Hao-qian, LIU Peng-cheng. The Overview in Development and Application of Genetically Modifed Crops[J]. China Biotechnology, 2017, 37(1): 119-128.
[5] ZENG Si-yu, SHI Tian-qiong, SHI Kun, REN Lu-jing, HUANG He, JI Xiao-jun. Establishment and Application of Genetic Motification System for Mortierella alpina[J]. China Biotechnology, 2016, 36(7): 112-116.
[6] XU Lin-jie, SUN Zhuo-jing, YANG Xiong-nian, ZHU Yong-hong, LIU Pei-lei. Cognition and Development of Genetic Modification from Perspective of Sciences[J]. China Biotechnology, 2016, 36(4): 30-34.
[7] LÜ xin, DU Wei-hua, ZHU Hua-bin. Development Present Situation,Problems and Solve Method of Somatic Cell Nuclear Transfer[J]. China Biotechnology, 2013, 33(4): 136-142.
[8] ZHANG Yan-jun, LIU Rong, ZHANG Meng-nan, ZHANG Xiao-long, YUANXiang-fei, MIAO Qing-fang, ZHEN Yong-su, ZHANG Yi-zhi. The Stability Analysis of IL3 Fusion Protein and Contrast Study of Its Biologic Activity Before and After Protein Modification[J]. China Biotechnology, 2013, 33(3): 117-122.
[9] . Screening and identification of differential expressed proteins in C-serum on Latex of Tapping Panel Dryness(TPD) in Rubber Tree(Hevea brasiliensis Muell. Arg.)[J]. China Biotechnology, 2008, 28(6): 28-36.