Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (10): 0-0    DOI:
    
Progress on Biosynthesis of Antibacterial compounds from Bacillus subtilis
Download: HTML   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The endospore-forming rhizobacterium Bacillus subtilis is able to produce a variety of polypeptides and peptide-derived antimicrobial compounds that are synthesized ribosomally or generated non-ribosomally. Non-ribosomal peptides contain lipopeptides and oligo-peptides, the molecular weight of which is less than 3,000 Da and that are catalyzed by employing multienzyme complexes (nonribosomal peptide synthetases, NRPSs) after growth has ceased, while the molecular weight of ribosomal peptides is much more than 30 kDa and they are synthesized during active growth. Both biosynthesis and regulation of NRPSs and ribosomal peptides are controlled by a series of gene, called gene clusters. Biosynthesis and gene regulation of non-ribosomal and ribosomal peptides were reviewed in this paper.

Key wordsnon-ribosomal and ribosomal peptides      gene clusters      biosynthesis     
Received: 18 June 2010      Published: 19 October 2010
Cite this article:

. Progress on Biosynthesis of Antibacterial compounds from Bacillus subtilis. China Biotechnology, 2010, 30(10): 0-0.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I10/0

[1] Valérie Leclère, Max Béchet, Akram Adam, et al. Mycosubtilin Overproduction by Bacillus subtilis BBG100 Enhances the Organism's Antagonistic and Biocontrol Activities[J]. Applied and Environmental Microbiology, 2005, 71(8): 4577-4584 [2] Torsten Stein. Bacllius subtilis antibiotics: structures, syntheses and specific functions[J]. Molecular microbiology, 2005, 56(4): 845-857. [3] Shen Q T, Chen X L, Sun C Y, et al. Dissecting and Exploiting Nonribosomal Peptide Synthetases [J]. Acta Biochimica et Biophysica Sinica, 2004, 36(4): 243-249 [4] 张学成, 张惠, 杨官品. 多肽类生物活性物质的非核糖体合成机理. 青岛海洋大学学报, 2001, 31(3): 389-394 Zhang X C, Zhang H, Yang G P. Journal of Ocean University of Qing Dao, 2001, 31(3): 389-394 [5] P Das S Mukherjee, R Sen. Genetic Regulations of the Biosynthesis of Microbial Surfactants: An Overview[J]. Biotechnology and Genetic Engineering, 2008, 25: 165-186 [6] 崔中利,刘卫东,曹慧等. 生物表面活性剂生物合成的研究进展. 土壤, 2005,37(6): 607-612 Cui Z L, Liu W D, Cao H, etal. Soils, 2005,37(6): 607-612 [7] Paola Cosmina, Francesco Rodriguez, Francescade Ferra, et al. Sequence and analysis of the genetic iocus responsibie for surfactin syntiiesis in Bacillus subtilis. Molecular Microbiology, 1993, 8(5), 821-831 [8] John M. Bland. The First Synthesis of a Member of the Iturin Family, the Antifungal Cyclic Lipopeptide, Iturin-A2[J]. J. Org. Chem, 1996, 61: 5663-5664 [9] K Tsuge, T Akiyama, M Shoda. Cloning, Sequencing, and Characterization of the Iturin A Operon[J]. Journal of bacteriology, 2001, 183(21): 6265-6273 [10] Magali Deleu, Michel Paquot and Tommy Nylander. Effect of Fengycin, a Lipopeptide Produced by Bacillus subtilis, on Model Biomembranes[ J]. Biophysical Journal, 2008, 94(7): 2667-2679 [11] Wu C Y, Chen C L, Lee Y H , et al. Nonribosomal Synthesis of Fengycin on an Enzyme Complex Formed by Fengycin Synthetases[ J]. The journal of biological chemistry, 2007, 282(8): 5608-5616 [12] Sarah A. Mahlstedt and Christopher T. Walsh. Investigation of Anticapsin Biosynthesis Reveals a Four-Enzyme Pathway to Tetrahydrotyrosine in Bacillus subtilis [ J]. Biochemistry, 2010, 49: 912–586 [13] Frances Chu1, et al. A Novel Regulatory Protein Governing Biofilm Formation in Bacillus subtilis[ J]. Mol Microbiol, 2008, 68(5):1117-1127 [14] Stefan Heinzmann, Karl-Dieter Entian and Torsten Stein. Engineering Bacillus subtilis ATCC 6633 for improved production of the lantibiotic subtilin[ J]. Appl Microbiol Biotechnol, 2006,69: 532-536 [15] Michiel Kleerebezem et al, Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters[J]. Peptides, 2004, 25: 1415-1424 [16] Champak Chatterjee, Moushumi Paul, Lili Xie, et al. Biosynthesis and Mode of Action of Lantibiotics[J]. Chem. Rev, 2005, 105: 633-683 [17] Yun Luo and John D. Helmann. Extracytoplasmic Function Factors with Overlapping Promoter Specificity Regulate Sublancin Production in Bacillus subtilis[J]. Journal of Bacteriology, 2009, 191(15): 1951-4958 [18] Zheng G L, et al. Genes of the sbo-alb Locus of Bacillus subtilis Are Required for Production of the Antilisterial Bacteriocin Subtilosin[J]. Journal of Bacteriology, 1999, 181(23): 7346-7355 [19] Torsten Stein, et al. Subtilosin Production by Two Bacillus subtilis Subspecies and Variance of the sbo-alb Cluster[J]. Applied and Environmental Microbiology, 2004, 70(4): 2349-2353
[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[3] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[4] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[5] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[6] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[7] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[8] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[9] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[10] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[11] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.
[12] Shuo XU,Wen-yu LU. Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum[J]. China Biotechnology, 2019, 39(6): 91-96.
[13] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[14] ZHANG Ya-guang, ZHANG Chuan-bo, LU Wen-yu. Progress of Biosynthesis of Sophorolipids and Its Derivatives Production in Starmerella bombicola[J]. China Biotechnology, 2017, 37(9): 134-140.
[15] GAO Hong-jiang, LI Sheng-yan, WANG Hai, LIN Feng, ZHANG Chun-yu, LANG Zhi-hong. Progress on Function and Biosynthesis of Benzoxazinoids[J]. China Biotechnology, 2017, 37(8): 104-109.