Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (04): 95-100    DOI:
    
The Latest Research Progress of IFN-λs
HUI Xi-wu,CHEN Hong,HUANG Bing-ren
National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
Download: HTML   PDF(895KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 IFN-λs(including IFN-λ1, IFN-λ2, and IFN-λ3)is a newly identified IFN family whose characters related to the type I IFNs and IL-10 family members. IFNλs act through a cell surface receptor composed of two chains, the first one (CRF2-12/IFN-?R1/IL-28Rα) being IFN-λspecific and the second one (CRF2-4 / IL-10R2) shared with IL-10. IFN-λs signal through the IFN-λR1 and activate JAK-STATs pathways, as well as type I IFNs. So, IFN-λs exhibit several common features with type I IFNs: antiviral activity, antiproliferative activity and in vivo antitumour activity.And most importantly,clinical trialsⅠwith PEG-IFN-λ1was completed as a novel medcine to HCV. In this review, we summarize the lasted research progress about the biology of IFN-λs and point that IFN-λs may be applied to the clinical medicine in the near future.



Key wordsIFN-λs      IFN-&lambda      receptor      Biological function     
Received: 12 January 2010      Published: 29 April 2010
Cite this article:

HUI Xi-Wu, CHEN Gong, HUANG Bing-Ren. The Latest Research Progress of IFN-λs. China Biotechnology, 2010, 30(04): 95-100.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I04/95

[1] Samarajiwa S A, Wilson W, Hertzog P J.Type I interferons: Genetics and structure, in: A. Meager The Interferons.Weinheim: WileyVCH,2006.334. 
[2] Kotenko SV, Gal1agber G, Baurin W, et al. IFNλs mediate antiviral protection through a distinct class II cytokine receptor complex. Nature Inmmnol, 2003, 4(1):6977. 
[3] Sheppard P, Kindsvogel W, Xu W, et al. IL28, IL29 and their class II cytokine receptor IL28R. Nature Immunol, 2003, 4(1):6368. 
[4] Lasfar A, LewisAntes, Kotenko S V, et al. Characterization of the mouse IFNlambda ligandreceptor system: IFNlambdas exhibit antitumor activity against B16 melanoma, Cancer Res,2006,66(8):44684477. 
[5] Chen Q, Carroll H P, Gadina M. The newest interleukins:recent additions to the evergrowing cytokine family. Vitam Horm, 2006,74:207228. 
[6] Dumoutier L, Renauld J C. Viral and cellular intedeukin10(IL10)related cytokines: from structures to functions. Eur Cytokine New, 2002,13(1):515. 
[7] Berghall H, Siren J, Sarkar D, et al. The interferoninducible RNA helicase is involved in measles virusinduced expression of antiviral cytokines. Microbes Infect, 2006,8(8):21382144. 
[8] Brand S, Beigel F, Olszak T, et al. IL28A and IL29 mediate antiproliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic IL28A expression. Am J Physiol Gastrointest Liver Physiol, 2005,289(5):960968. 
[9] Siren J, Pirhonen J, Julkunen I, et al. IFNα regulates TLRdependent gene expression of IFNα, IFNβ, IL28, and IL29. J. Immunol. 2005,174(4):19321937. 
[10] Coccia E M, Severa M, Giacomini E,et al. Viral infection and Tolllike receptor agonists induce a differential expression of type I and λ interferons in human plasmacytoid and monocytederived dendritic cells. Eur J Immunol, 2004,34(3):796805. 
[11] Osterlund P, Veckman V, Siren J, et al. Gene expression and antiviral activity of α/β interferons and interleukin29 in virusinfected human myeloid dendriticcells. J Virol,2005,79(15):96089617. 
[12] Spann K M, Tran K C, Chi B, et al. Suppression of the induction of α, β, and λ interferons by the NS1 andNS2 proteins of human respiratory syncytial virus in human epithelialcells and macrophages. J Virol, 2004,78(8):43634369. 
[13] Kotenko S V. The family of ILl0related cytokines and their receptors: related, but to what extent? Cytokine Growth Factor Rev, 2002,13(3):223240. 
[14] Renanld J C. ClassⅡcytokine receptors and their ligands: key antiviral and inflammatory modulators. Nature Rev Immunol,2003, 3(8):667676. 
[15] Uze G, Monneron D. IL28 and IL29: Newcomers to the interferon family. Biochimie, 2007,89(67):729734. 
[16] Witte K, Gruetz G,Volk H D,et al.Despite IFNλ receptor expression, blood immune cells, but not keratinocytes or melanocytes, have an impaired response to type III interferons: implica tions for therapeutic applications of these cytokines. Genes and Immun, 2009,10(8):702714. 
[17] Vilcek J. Novel interferons. Nature Imnmnol, 2003, 4(1): 89. 
[18] Dumoutier L, Tounsi A, Michiels T, et al. Role of interleukin IL28 receptor tyrosine residues for antival and antiproliferative activity of IFNλ1/interferonλ1. J Bio Chem, 2004, 279(31): 3226932274. 
[19] Dumoutier L, Lejeune D, Hor S, et al. Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochem J, 2003, 370(pt2):391396. 
[20] Meager A, Visvalingam K, Diger P, et al. Biological activity of interleukins28 and29: Comparison with type I interferons. Cytokine, 2005, 31(2):109118. 
[21] Jordan WJ, Eskdale J, Srinivas S, et al. Human interferon lambda1 (IFNλ1) modulates the Th1/Th2 response,Genes and Immunity,2007,8(3):254261. 
[22] Robek M D, Boyd B S, Chisari F V. Lambda interferon inhibits hepatitis B and C virus replication. J Virol, 2005,79(6):38513854. 
[23] Andrew J M, Mitchell L, Shiffman M L, et al. Phase 1b doseranging study of 4 weeks of PEGInterferon (IFN) Lambda (PEGrIL29) in Combination with Ribavirin (RBV) in Patients with Chronic Genotype 1 Hepatitis C Virus (HCV) Infection AASLD. The Liver Meeting in Boston, MA, October 30  November 3, 2009. 
[24] Li WA. Regulation of apoptosis by type III interferons. Cell Prolif, 2008,41(6):960979. 
[25] Numasaki M, Tagawa M, Iwata F, et al. IL28 elicits antitumor responses against murine fibrosarcoma. J Immunol, 2007,178(8):50865098. 
[26] Sato A,Ohtsuki M,Hata M, et al. Antitumor activity of IFNλ in murine tumor models the journal of immunology,2006, 176(12):76867694. 
[27] Mennechet F J, Uzé G. Interferonlambdatreated dendritic cells specifically induce proliferation of FOXP3expressing suppressor T cells. Blood, 2006, 107(11):44174423. 
[28] Maher S G, Sheikh F,Scarzello A J, et al. IFNα and IFNλ differ in their antiproliferative effects and uration of JAK/STAT signaling activity,Cancer Biol Ther, 2008,7(7):11091115. 
[29] Zitzmann K, Brand S, Baehs S, et al. Novel interferonλs induce antiproliferative effects in neuroendocrine tumor cells. Biochemical and Biophysical Research Communications, 2006,344(4):13341341. 
[30] Li Q, Kawamura K, Ma G, et al. Interferonλ induces G1 phase arrest or apoptosis in oesophageal carcinoma cells and produces antitumour effects in combination with anticancer agents, Eur J Cancer, 2010,46(1):180190.

[1] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[2] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[3] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[4] ZHU Ying,FAN Meng-tian,LI Ju-qiong,CHEN Bin,ZHANG Meng-hao,WU Jing-hong,SHI Qiong. Effect of Chemokine Receptor CX3CR1 on Osteogenic Differentiation of Human Aortic Valve Interstitial Cells[J]. China Biotechnology, 2019, 39(8): 7-16.
[5] Kai-xi JI,Dan JIAO,Zhong-kui XIE,Guo YANG,Zi-yuan DUAN. Advances and Prospects of Brown Adipocyte-Specific Gene PRDM16[J]. China Biotechnology, 2019, 39(4): 84-93.
[6] Wei-bing PAN,Peng ZHU,Qi-ang ZENG,Kai WANG,Song LIU. Diversity Analysis of 5 CDR3s of T Cell Receptor β Chain in Prostate Cancer[J]. China Biotechnology, 2019, 39(3): 7-12.
[7] Yu-sheng OU,Hong-jun ZHENG,Shi ZHONG,Yi LI. TAEST16001:TCR Affinity Enhanced Specific-T-cell Therapy[J]. China Biotechnology, 2019, 39(2): 49-61.
[8] Xin GAO,Pan-jian WEI,Zhuo-hong YAN,Ling YI,Xiao-jue WANG,Bin YANG,Hong-tao ZHANG. Cloning and Expression of Single Chain Antibody Against Human EGFR[J]. China Biotechnology, 2018, 38(5): 73-78.
[9] Xiang HUANG,Jie YANG,Pei-yan HE,Zhi-hui WU,Hui-lan ZENG,Xin-Ning WANG,Jian-wei JIANG. Molecular Mechanism of Inducing 2774-C10 Cell Apoptosis and G1/S Cell Cycle Arrest by Ethanol Extract from Elephantopus mollis H.B.K.[J]. China Biotechnology, 2018, 38(4): 17-23.
[10] Jia-wei XU,Hua HE,Jing ZHANG,Chu-chao LEI,Hong CHENG,Yong-zhen HUANG. Research Progress on the Structure and Function of Transcription Factor KLF8 Gene[J]. China Biotechnology, 2018, 38(4): 90-95.
[11] QIN Rui-ping, LI Ling-xia, MA Xiao-ling, XI Ou-yan, ZHAO Ting, QIU Ling-ling, LI Jiang-wei. Inhibition of Osteoporosis in Ovariectomized Rats Using Follicle-stimulating Hormone Receptor Specific Polyclonal Antibody[J]. China Biotechnology, 2017, 37(6): 9-16.
[12] LI Yan-wei, MA Yi, HAN Lei, XIAO Xing, DANG Shi-ying, WEN Tao, WANG De-hua, FAN Zhi-yong. A Preliminary Study on Fas Apoptosis Inhibitory Molecule FAIM 1 Inducing and Simple Obesity[J]. China Biotechnology, 2017, 37(6): 37-42.
[13] ZHENG Jie, JIANG Chao, LI Xiao-kun, TIAN Hai-shan. The Progression of Fibroblast Growth Factor 6[J]. China Biotechnology, 2017, 37(4): 110-114.
[14] CHEN Bing, KONG Ling-jiao, LEI Jin-xia, SHEN Lu, ZHANG Cai, WANG Jin-hua. BMP9 Induces Osteogenic/odontogenic Differentiation of ISCAP through the Smad Pathway[J]. China Biotechnology, 2016, 36(8): 16-22.
[15] TAO Chang-li, HUANG Shu-lin. Advances in Research on Optimization of Transgenic TCR Pairing in TCR Gene Therapy[J]. China Biotechnology, 2016, 36(3): 87-92.