Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (10): 0-0    DOI:
    
Progress on Prion Synthesis in vitro
Download: HTML   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Prion diseases are neurodegenerative diseases, harmful to animal and human health. Mechanisms of prion diseases are not fully understood. Systems of prion replications in vitro are used to studying prion pathogenesis, however, mock environment in vitro for studying conversion mechanisms from normal cellular prion proteins to disease-associated scrapie prion proteins is relatively difficult and very important. In this review, we described cell-free conversion assay, cell-lysate conversion assay, Protein Misfolding Cyclic Amplification, Autocatalytic conversion assay, several methods of prion conversion in vitro, and discussed them in reflecting prion propagation in vivo, provided a lot of target samples for studying Prion disease, in order to facilitate to further study prion pathogenesis in the future.

Key wordsCellular prion protein      prion      artificial expression      in vitro      conversion     
Received: 18 June 2010      Published: 19 October 2010
Corresponding Authors: Zeng-Shan Liu     E-mail: zsliu1959@163.com
Cite this article:

. Progress on Prion Synthesis in vitro. China Biotechnology, 2010, 30(10): 0-0.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I10/0

[1] 赵德明.动物传染性海绵状脑病.北京:中国农业大学出版社,2005,58~59 Zhao D M. Animal transmissible spongiform encephalopathies .Beijing: China Agricultural University Press, 2005,58~59 [2] Raeber A J, Borchelt D R, Scott M, et al. Attemptes to convert the cellular prion protein into the scrapie isoform in cell-free systems. J Virol, 1992,66(10):6155~6163 [3] Kocisko D A, Come J H, Priola S A, et al. Cell-free formation of protease-resistant prion protein. Nature,1994,370(6489):471~474 [4] Maxson L, Wong C, Herrmann L M, et al. A solid-phase assay for identification of modulators of prion protein interactions. Anal Biochem, 2003,323(1):54~64 [5] Kocisko D A, Baron G S, Rubenstein R, et al. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J Virol, 2003,77(19):10288~10294 [6] Silverira J R, Raymond G J, Hughson A G, et al. The most infectious prion protein particles. Nature, 2005,437(7056):257~267 [7] Kirby L, Birkett C R, Rudyk H, et al. In vitro cell-free conversion of bacterial recombinant PrP to PrPres as a model for conversion. J Gen virol, 2000,81(Pt4):2565~71 [8] Saborio G P, Soto C, Kascsak R J, et al. Cell-lysate conversion of prion protein into its protease-resistant isoform suggests the participation of a cellular chaperone. Biochem Biophys Res Commun , 1999,258(2):470~475 [9] Saborio G P, Permanne B, Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature, 2001.411(6839):810~813 [10] Castilla J, Saá P, Morales R, Abid K, et al. Protein misfolding cyclic amplification for diagnosis and prion propagation studies. Methods Enzymol, 2006,412:3~21 [11] Castilla J, Saá P, Hetz C, et al. In vitro generation of infectious scrapie prions. Cell, 2005,121(2):195~206 [12] Soto C, Anderes L, Suardi S, et al. Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett, 2005,579(3):638~642 [13] Lucassen R, Nishina K, Suattapone S. In vitro amplification of protease-resistant prion protein requires free sulfhydryI groups. Biochemistry, 2003,42(14):4127~4135 [14] Deleault N, Geoghegan J C, Nishina K, et al, Supattapone S. Protease-resistant rion protein amplification reconstituted with partially purified substrates and synthetic polyanions. J Biol Chem, 2005,280(29):26873~26879 [15] Deleault N R, Harris B T, Rees J R, et al. Formation of native prions from minimal components in vitro. Proc Natl Acad Sci USA, 2007,104(23):9741~9746 [16] Geoghegan J C, Valdes P A, Orem N R, et al, Supattapones S. Selective incorporation of polyanionic molecules into hamster prions. J Biol Chem , 2007,282(50) :34341~36353 [17] Atarashi R, Moore R A, Sim V L, et al. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein.Nat Methods, 2007,4(8):645~650 [18] Atarashi R, Wilham J M, Christensen L, et al. Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat Methods, 2008,5(3):211~212 [19] Wang F, Wang X, Yuan C G, et al. Generating a Prion with Bacterially Expressed Recombinant Prion Protein. Science. 2010,327(5969):1132~1135 [20] Baskakov I V, Legname G, Baldwin M A, et al. Pathway complexity of prion protein assembly into amyloid. J Biol Chem. 2002,277(24):21140~21148 [21] Bocharova O V, Breydo L, Parfenov A S, et al. In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrPsc. J MOL Biol. 2005,346(2):645~659 [22] Baskakov I V. Autocatalytic conversion of recombinant prion proteins displays a species barrier. J Biol Chem. 2004,279(9):7671~7677 [23] Breydo L, Bocharova O V, Baskakov I V. Semiautomated cell-free conversion of prion protein: Applications for high-throughput screening of potential antiprion drugs. Anal Biochem, 2005,339(1):165~173 [24] Legname G, Baskakov I V, Nguyen H O, et al. Sythetic mammalian prions. Science, 2004,305(5684):673~676 [25] Westaway D, DeArmond S J, Cayetano-Canlas J, et al. Degeneration of skeletal muscle,peripheral nerves,and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell, 1994,76(1):117~129
[1] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[2] CHEN Chen,HU Jin-chao,CAO Shan-shan,MEN Dong. The Development of Antigen Testing for SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 119-128.
[3] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[4] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[5] SHENG Xiao-jing,QI Xiao-xue,XU Lei,QI Zhi-qing,DIAO Yong. The Research Progress of Gene Cloning and Assembly[J]. China Biotechnology, 2020, 40(1-2): 133-139.
[6] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[7] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[8] Fu-yun WU,Mei-lian YAO,Sheng-ying WU,Xiong WANG,Shan LI. Establishment of an in Vitro Method to StudyStore-Operated Calcium Channel Orai1[J]. China Biotechnology, 2018, 38(9): 41-47.
[9] JU Xiao-zhi, YUAN Qian-qian, MA Chun-ling, XIAO Dong-guang, MA Hong-wu. In vitro Construction of the Threonine Cycle Pathway for Carbon Fixation[J]. China Biotechnology, 2017, 37(6): 56-62.
[10] ZHANG Jing, ZHANG Wen-qiang, QIN Hui-min, MAO Shu-hong, XUE Jia-lu, LU Fu-ping. Expression of Related Cholesterol Dehydrogenation Protein and Bioactivity Research[J]. China Biotechnology, 2017, 37(1): 21-26.
[11] XUAN Huan-ling, LI Jing, LUO Feng, DAI Xian-zhu. In vitro Refolding of an Outer Membrane Protein from a Psychrotrophic Shewanella sp.[J]. China Biotechnology, 2016, 36(3): 61-67.
[12] KANG Xue-jun, YANG Yi-shu . Research Progress on in vitro Models of HIV-1 Latency[J]. China Biotechnology, 2015, 35(8): 96-102.
[13] GAO Shan, CHEN Wei, YU Lei, LI Jing, SUN Cai-xian, GAO Jie, LIU Mu. Culturing of Mouse and Rat Preimplantation Embryos in Various Chemically Defined Media[J]. China Biotechnology, 2015, 35(7): 83-93.
[14] ZHAO Rui-yuan, LIU Chun-xia, LI Hui-peng, WANG Shen-yuan, ZHOU Huan-min. The Impacts of Feeder Cells on Culture in vitro of Sheep Embryonic Stem Cells[J]. China Biotechnology, 2015, 35(2): 18-24.
[15] FENG Qi, WANG Ying. Optimization and Application of SLiCE in vitro Assembly Method[J]. China Biotechnology, 2015, 35(10): 59-65.