Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (1): 108-114    DOI: 10.13523/j.cb.20160115
    
Research Progress of High Density Fermentation Process of Pichia pastoris
WU Jie, ZHANG Xiao-xue, YU He-shui, LI Wei, JIA Yu-ping, GUO Jiang-yu, ZHANG Li-juan, SONG Xin-bo
Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
Download: HTML   PDF(451KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Pichia pastoris expression system is a new foreign protein eukaryotic one which has been the rapid development of the technology in recent years, widely used in many different fields and many gene engineering products has been successfully expressed. The composition of Pichia pastoris expression system was introduced mainly from the aspects of the expression of common strain, vector and phenotype. It was elaborated in detail that how these effect the process of high cell density fermentation of Pichia pastoris and the result protein expression from the aspects of exogenous gene's own characteristics, the composition of culture medium and the tempreture, pH, dissolved oxygen and feeding strategy. At last, the Pichia pastoris high cell density fermentation was discussed and provides a reference for further research.



Key wordsEngineering strain      Pichia pastoris      High-density fermentation      Expression system     
Received: 04 August 2015      Published: 11 January 2016
ZTFLH:  Q815  
Cite this article:

WU Jie, ZHANG Xiao-xue, YU He-shui, LI Wei, JIA Yu-ping, GUO Jiang-yu, ZHANG Li-juan, SONG Xin-bo. Research Progress of High Density Fermentation Process of Pichia pastoris. China Biotechnology, 2016, 36(1): 108-114.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160115     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I1/108

[1] Gasser B, Prielhofer R, Marx H, et al. Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiology, 2013, 8 (2): 191-208.
[2] 高敏杰,张许,高鹏,等. 重组毕赤酵母生产外源蛋白的过程控制与生理分析的研究进展. 食品工业科技,2014, 35(24): 389-395. Gao M J, Zhang X, Gao P, et al. Process control and physiological analysis of heterologous protein production by recombinant Pichia pastoris. Science and Technology of Food Industry, 2014, 35 (24): 389-395.
[3] Mack M, Wannermacher M, Hobl B, et al. Comparison of two expression platforms in respect to protein yield and quality: Pichia pastoris versus Pichia angusta. Protein Expression and Purification, 2009, 66(2): 165-171.
[4] Staley C A, Huang A, Nattestad M, et al. Analysis of the 5' untranslated region (5' UTR) of the alcohol oxidase 1 (AOX1) gene in recombinant protein expression in Pichia pastoris. Gene, 2012, 496 (2): 118-127.
[5] Zhou W J, Yang J K, Miao L H, et al. Codon optimization, promoter and expression system selection that achieved high-level production of Yarrowia lipolytica lipase in Pichia pastoris. Enzyme and Microbial Technology, 2015, 71: 66-72.
[6] 朱泰成,李寅. 毕赤酵母表达系统发展概况及趋势. 生物工程学报,2015, 31(6): 929-938. Zhu T C, Li Y. Recent development of Pichia pastoris system:current status and future perspective . Chinese Journal of Biotechnology, 2015, 31(6): 929-938.
[7] Li L, Qian D M, Shao G G, et al . High-level expression, purification and study of bioactivity of fusion protein M-IL-2 (88Arg, 125AIa) in Pichia pastpris. Protein Expression and Purification, 2014, 101 : 99-105.
[8] Zhang J, Wang X, Zheng Y, et al. Enhancing yield of S-adenosylmethionine in Pichia pastoris by controlling NH+4 concentration. Bioprocess and Biosystems Engineering, 2008, 31 (2): 63-67.
[9] Salunkhe S, Soorapaneni S, Prasad K S, et al. Strategies to maximize expression of rightly processed human interferon α2b in Pichia pastoris. Protein Expression and Purification, 2010, 71 (2): 139-146.
[10] Du C, Han L, Xiao A, et al. Secretory expression and purification of the recombinant duck interleukin-2 in Pichia pastoris. Journal of Microbiology and Biotechnology, 2011, 21 (12): 1264-1269.
[11] Zhou X Y, Ying Y, Jianjun T, et al. Production of LYZL6, a novel human c-type lysozyme, in recombinant Pichia pastoris employing high cell density fed-batch fermentation . Journal of Bioscience and Bioengineering, 2014,118 (4): 420-425.
[12] Lee Y C, Chen C T, Chiu Y T, et al. An effective cellulose-to-glucose-to fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts. Chem Cat Chem, 2013, 5(8): 2153-2157.
[13] Spohner S C, Muller H, Quitmann H, et al. Expression of enzymes for the usage in food and feed industry with Pichia pastoris. Journal of Biotechnology, 2015, 202: 118-134.
[14] Gao Y, Ma Q, Shan A, et al . Expression in Pichia pastoris and biological activity of avian beta-defensin 6 and its mutant peptide without cysteines. Protein Peptide Lett, 2012,19 (10) :1064-1070.
[15] Celik E, Calik P. Production of recombinant proteins by yeast cells. Biotechnology Advance, 2012, 30 (5): 1108-1118.
[16] Idiris A, Tohda H, Kumagai H, et al. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol, 2010, 86 (2): 403-417.
[17] Takanori T, Hideki F, Akihiko K . Construction of a Pichia pastoris cell-surface disply system using Flo1P anchor system . Biotechnology Progress, 2006, 22 (4) : 989-993.
[18] Potvin G, Ahmad A, Zhang Z. Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review. Biochemical Engineering Journal, 2012, 64: 91-105.
[19] 闫达中,许芳,杨晓燕. 毕赤酵母基因工程菌高密度发酵纳豆激酶条件研究 .中国酿造,2009, 9: 59-61. Yan D Z, Xu F, Yang X Y. High cell density fermentation conditions of nattokinase by genetic engineering strain Pichia pastoris GS115/pPronk1. China Brewing, 2009, 9: 59-61.
[20] Gurkan C, Ellar D J. Recombinant production of bacterial toxins and their derivatives in the methylotrophic yeast Pichia pastoris. Microbial Cell Factories, 2005, 4: 33.
[21] 荣博涵,甄玉国,赵小丽,等. 不同补料方式对酿酒酵母高密度发酵的影响. 中国酿造,2015, 34 (2): 72-75. Rong B H, Zhen Y G, Zhao X L, et al. Effect of fed-batch fermentation modes on high density fermentation of Saccharomyces cerevisiae. China Brewing, 2015, 34 (2): 73-75.
[22] Li X, He X Y, Li Z L, et al. Combined strategies for improving the production of recombinant Rhizopus oryzae lipase in Pichia pastoris. Bioresources, 2013, 8 (2): 2867-2880.
[23] Cos O, Ramón R, Montesinos J L, et al. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: A review. Microbial Cell Factories, 2006, 5(1): 17.
[24] Hasslacher M, Schall M, Hayn M, et al. High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree hevea brasiliensis in microbial hosts. Protein Expression and Purification, 1997, 11 (1): 61-71.
[25] 汪艳,李晓,陈勇,等.来源于瘤胃厌氧真菌Neocallimastix frontalis 木聚糖酶在毕赤酵母中的表达. 生物技术通讯,2015, 31 (5): 186-193. Expression of a Xylanase Gene Originated from Rumen Anaerobic Fungi Neocallimastix frontalis in Pichia pastoris. Biotechnology Bulletin, 2015, 31 (5): 186-193.
[26] Xu L, Jiang X, Yang J, et al. Cloning of novel lipase gene lipJ08, from Candida rugosa and expression in Pichia pastoris by codon optimization. Biotechnology Letters, 2010, 32 (2): 269-276.
[27] Jia H Y, Fan G, Yan Q J. High level expression of a hyperthermostable Thermotoga maritina xylanase in Pichua pastoris by codon optimization. Journal of Molecular Catalysis B: Enzymatic, 2012, 78 (2): 72-77.
[28] Charoenrat T, Khumruaengsri N, Promdonkoy P, et al. Improvement of recombinant endoglucanase produced in Pichia pastoris KM71 through the use of synthetic medium for inoculum and pH control of proteolysis. Journal of Bioscience and Bioengineering, 2013, 116 (2): 193-198.
[29] 徐爱才,刘军,李鑫,等.甜蛋白Monellin在毕赤酵母中的表达及响应面法优化发酵培养基 .中国酿造, 2011, (2): 116-120. Xu A C, Liu J, Li X, et al. Expression of monellin in Pichia pastoris and optimization of fermentation medium with response surface methodology. China Brewing, 2011, (2): 116-120.
[30] Cos O, Ramon R, Montesinos J L, et al. A simple model-based control for Pichia pastoris allows a more efficient heterologous protein production bioprocess. Biotechnology and Bioengineering, 2006, 95 (1): 145-154.
[31] Zhu T, You L, Gong F, et al. Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline β-mannanase in Pichia pastoris. Enzyme and Microbial Technology, 2011, 49(4): 407-412.
[32] Jin H, Liu G Q, Dai K K, et al. Improvement of porcine interferon-alpha production by recombinant Pichia pastoris via induction at low methanol concentration and low temperature. Applied Biochemistry and Biotechnology, 2011, 165 (2): 559-571.
[33] 刘春风.毕赤酵母表达系统的实际应用研究.厦门科技, 2011, (3): 51-56. Liu C F. The actual application of Pichia expression system. Xiamen Technology, 2011, (3): 51-56.
[34] Ying Y, Zhou X Y, Wu S, et al. High-yield production of the human lysozyme by Pichia pastoris SMD1168 using response surface methodology and high-cell density fermentation . Electronic Journal of Biotechnology, 2014, 17 (6): 311-316.
[35] 陈晓平,房丹丹. Spinigerin α抗菌肽中试化发酵条件的研究. 食品科学,2014, 35 (7): 138-142. Chen X P, Fang D D. Optimization of pilot-scale fermentation conditions for the production of spinigerin a as an antibacterial peptide. Food Science, 2014, 35 (7): 138-142.
[36] Soyaslan E S, Calik P. Enhanced recombinant human erythropoietin production by Pichia pastoris in methanol fed-batch/sorbitol batch fermentation through pH optimization. Biochemical Engineering Journal, 2011, 55 (1): 59-65.
[37] 樊春媛,王雪,郎晓磊.发酵工业中毕赤酵母表达的影响因素. 河北化工,2012, 35 (7): 50-51. Fan C Y, Wang X, Lang X L. The affect factors of the Pichia pastoris expression system in fermentation industry. Hebei Huagong, 2012, 35 (7): 50-51.
[38] Khatri N K, Hoffmann F. Oxygen-limited control of methanol uptake for improved production of a single-chain antibody fragment with recombinant Pichia pastoris. Applied Microbiology and Biotechnology, 2006, 72 (3): 492-498.
[39] 邓毛程,王瑶,冯文清,等. 搅拌器对谷氨酸菌高密度培养的影响 .食品与机械,2007, 23 (5): 101-103. Deng M C, Wang Y, Feng W Q, et al. Study on the effects of stirrer on high cell density culture of glutamic acid bacterium. Food & Machinery, 2007, 23 (5): 101-103.
[40] Wang Y, Wang Z H, Xu Q L, et al. Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastoris. Process Biochemistry, 2009, 44 (9): 949-954.
[41] Katakura Y, Zhang W, Zhuang G, et al. Effect of methanol concentration on the production of human β 2-glycoprotein I domain V by a recombinant Pichia pastoris: A simple system for the control of methanol concentration using a semiconductor gas sensor. Journal Fermentation and Bioengineering, 1998, 86 (5): 482-487.
[42] Surribas A, Cos O, Montesinos J L, et al. On-line monitoring of the methanol concentration in Pichia pastoris cultures producing an heterologous lipase by sequential injection analysis . Biotechnology Letters, 2003, 25 (21): 1795-1800.
[43] Gurramkonda C, Adnan A, Gäble T, et al. Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: application to intracellular production of hepatitis B surface antigen. Microbial Cell Factories, 2009, 8(1): 13.
[44] 刘斌.巴氏毕赤酵母基因工程菌高密度发酵表达重组人胶原蛋白. 南京:南京理工大学, 环境与生物工程学院,2012. Liu B. High-density Fermentation of Genetically Engineered Pichia pastoris Expressing Recombinant Human- source Collagen. Nanjing:Nanjing University of Science & Technology, Institute of Environmental and Biological Engineering,2012.
[45] Ren H T, Yuan J Q, Bellgardt K H, Macrokinetic model for methylotrophic Pichia pastoris based on stoichiometric balance . Journal of Biotechnology, 2003, 106(1): 53-68.
[46] 吴胜. 毕赤酵母表达重组人溶菌酶的发酵工艺优化及傅里叶红外光谱仪在其过程底物控制中的初步应用研究 .华东理工大学,生物工程学院,2014. Wu S. Expression Optimizing Strategy of Recombinant Human Lysozyme and the Application of Infrared Spectrometer on the Substrate Monitor in Pichia pastoris Fermentation. East China University of Science and Technology, Institute of Bological Engineering,2014.
[47] 梁克学,丁健,侯国力,等.甲醇/山梨醇共混流加控制溶氧改善毕赤酵母表达猪圆环病毒Cap蛋白的发酵性能. 生物加工过程,2014, 12 (5): 14-22. Liang K X, Ding J, Hou G L, et al. Promoting porcine circovirus cap protein expression in Pichia pastoris thtough controlling DO by methanol and soribitol co-feeding. Chinese Journal of Bioprocess Engineering, 2014, 12 (5): 14-22.
[48] Celik E, Calik P, Oliver S G, Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast, 2009, 26 (9): 473-484.
[49] Calik P, Celik E, Oliver S G, Recombinant protein production by Mut(+) strain of Pichia pastoris using dual carbon sources: methanol and sorbitol. New Biotechnology, 2009, 25 (1): S60.
[50] Zhu T, You L, Gong F, Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline β-mannanase in Pichia pastoris. Enzyme and Microbial Technology, 2011, 49 (4): 407-412.

[1] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[2] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[3] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[4] QI Jia-long, GAO Rui-yu, JIN Shu-mei, GAO Fu-lan, YANG Xu, MA Yan-bing, LIU Cun-bao. Expression and Identification of Varicella-Zoster Virus Glycoprotein E and Immunogenicity Assay[J]. China Biotechnology, 2019, 39(8): 17-24.
[5] LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress[J]. China Biotechnology, 2017, 37(8): 84-95.
[6] ZHANG Zhen-yang, YANG Yan-kun, ZHAN Chun-jun, LI Xiang, LIU Xiu-xia, BAI Zhong-hu. Pichia pastoris X-33 ΔGT2 Release the Glycerol Repression on AOX1 and Ef-ficiently Express Heterologous Proteins[J]. China Biotechnology, 2017, 37(1): 38-45.
[7] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[8] KANG Guo-kai, FENG Guo-dong, CAO Kun-lin, CHEN Zheng-jun, GE Xiang-yang. Optimization for High Production Fermentation of Lunasin from Recombinant Pichia pastoris[J]. China Biotechnology, 2016, 36(8): 73-79.
[9] SHI Hui-lin, SUN Jing-chun, ZHANG Rong-kai, GAO Da-qi, WANG Ze-jian, GUO Mei-jin, ZHOU Li-qin, ZHUANG Ying-ping. Application of the Electronic Nose on the Online Feedback Control of Methanol Concentration during Glucoamylase Fermentation Optimization by Pichia pastoris[J]. China Biotechnology, 2016, 36(3): 68-76.
[10] LIU Xiao-ming, JIANG Ning, ZHANG Ai-zhong, CAI Peng. Expression of Hybrid Antimicrobial Peptides in Pichia Yeast and Identification of Its Biological Activity[J]. China Biotechnology, 2016, 36(2): 81-89.
[11] LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris[J]. China Biotechnology, 2016, 36(2): 73-80.
[12] NIU Chun-qing, GAO Xiang, LUO Jin-hua, LI Wei, LIU Qiu-ping, CHEN Yun, LIU Yan. Preparation of Recombinant Human Death Receptor 6 Ectodomain and Its Interaction with a Cleaved Amino-terminal Fragment of Human Amyloid Precursor Protein[J]. China Biotechnology, 2016, 36(2): 1-6.
[13] QIAN Kai, ZHANG Jing-jing, WU Su-ping, CAI Yan-fei, CHEN Yun, JIN Jian. Constituted expression and purification of glucagon-like peptide-1 analogue in Pichia pastoris using GAP promoter[J]. China Biotechnology, 2015, 35(5): 66-73.
[14] TIAN Cong-hui, TANG Yan-ting, WANG Quan, ZHOU Hong-gang. Estabilishment and Application of a Model for Drug Screening Targeting Neprilysin Proteinase[J]. China Biotechnology, 2015, 35(2): 52-58.
[15] LU Qing-shan, QIAO Yuan-yuan, LI Jin-feng, WANG Yun-liang, WANG Shan-shan, SHI Cheng-he, YANG Xiao-peng, ZHANG Da-jin. Soluble Expression of Human HPPCn Recombinant Protein and Detection of Its Proliferation Activity[J]. China Biotechnology, 2015, 35(12): 15-20.