Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (1): 86-94    DOI: 10.13523/j.cb.20160112
    
Progress of Plant as Bioreactor in Molecular Pharming
ZHANG Dan-feng1,2, YU Zi-qing1,2, WU Suo-wei1,2, RAO Li-qun1, WAN Xiang-yuan1,2
1. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
2. Beijing Shou Jia Li Hua Sci-Tech Company Limited, Bio-Tech Breeding Beijing International Science and Technology Cooperation Base, Beijing 100192, China
Download: HTML   PDF(463KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Using plant as bioreactor to produce various valuable proteins or peptides is the central part of molecular pharming .This method is more and more used because of its advantages such as simple operation, low cost, large scale planting and short period compared with animal and microbe bioreactor. The common optimization methods of vector construction and foreign gene, variety of plant acceptor and the different expression systems of plant bioreactor were reviewed. As the increasing demand of biopharmaceuticals, there is a great perspective of plant bioreactor to be used in molecular pharming in the future.



Key wordsPlant bioreactor      Foreign protein      Molecular pharming      Host system     
Received: 23 July 2015      Published: 11 January 2016
ZTFLH:  Q81  
Cite this article:

ZHANG Dan-feng, YU Zi-qing, WU Suo-wei, RAO Li-qun, WAN Xiang-yuan. Progress of Plant as Bioreactor in Molecular Pharming. China Biotechnology, 2016, 36(1): 86-94.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160112     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I1/86

[1] James C. 2014年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2015, 35(1): 1-14. James C. Global status of commercialized biotech/GM crops: 2014. China Biotech, 2015, 35(1): 1-14.
[2] Barta A, Sommerqruber K, Thompson D, et al. The expression of a nopaline synthase - human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol, 1986, 6(5): 347-357.
[3] Hiatt A, Cafferkey R,Bowdish K. Production of antibodies in transgenic plants. Nature, 1989, 342(6245): 76-78.
[4] Fujiwara T, Lessard P A, Beachy R N. Seed-specfic repression of GUS activity in tobacco plants by antisense RNA. Plant Mol Biol, 1992, 20(5): 1059-1069.
[5] Geng S, Ma M, Ye H C, et al. Anther-specific expression of ipt gene in transgenic tobacco and its effect on plant development. Transgenic Res, 2002, 11(3): 269-278.
[6] Van Haaren M J, Houck C M. A functional map of the fruit-specific promoter of the tomato 2A11 gene. Plant Molecular Biology, 1993, 21(4): 625-640.
[7] Liu Y W, Han C H, Lee M H, et al. Patatin, the tuber storage protein of potato (Solanum tuberosum L.), exhibits antioxidant activity in vitro. J Agric Food Chem, 2003, 51(15): 4389-4393.
[8] 周晓红, 陈晓光, 张晓东, 等. 番茄果实特异性E8启动子的基因克隆与序列分析. 第一军医大学学报, 2003, 23(1): 25-28. Zhou X H, Chen X G, Zhang X D, et al. Cloning and sequence analysis of tomato fruit-specific E8 promotor from Lycopersicon esculentum. J First Mil Med Univ, 2003, 23(1): 25-28.
[9] 王新力, 彭学贤. 香蕉果实成熟相关基因ACO1启动子区的克隆及其功能初探. 生物工程学报, 2001, 17(4): 428-431. Wang X L, Peng X X. Cloning of promotor of banana fruit ripening-related ACO1 and primary study on its function. Chinese Journal of Biotechnology, 2001, 17(4): 428-431.
[10] Stefan S, Neil E, Rainer F. Antibody molecular farming in plants and plant cells. Phytochemistry Reviews, 2002, 1(1): 45-54.
[11] ner T G. Metabolic Engineering Glycosylation: Biotechnology's Challenge to the Glycobiologist in the Next Millennium, in Carbohydrates in Chemistry and Biology. Germany: Wiley-VCH Verlag GmbH, 2000:1043-1064 .
[12] Kim T G, Kim H M, Lee H J, et al. Reduced protease activity in transformed rice cell suspension cultures expressing a proteinase inhibitor. Protein Expr Purif, 2007, 53(2):270-274.
[13] Rehbinder E, Engelhard M, Hagen K, et al. Pharming: Promises and risks of biopharmaceuticals derived from genetically modified plants and animals. Ethics of Science and Technology Assessment, 2008, 35: 1-341.
[14] Moloney M, Boothe J, Rooijen V, et al. Oil Bodies and Associated Proteins as Affinity Matrices: United States, 6509453. 2003-1-21.
[15] Stoger E, Sack M, Perrin Y, et al. Practical considerations for pharmaceutical antibody production in different crop systems. Mol Breed, 2002, 9(3): 149-158.
[16] 李翠玲, 崔继哲, 王洋, 等. 医药分子农业的受体系统评述. 分子植物育种, 2005, 3(1): 40-146. Li C L, Cui J Z, Wang Y, et al. The host system of medical molecular pharming. Molecular Plant Breeding, 2005, 3(1): 140-146.
[17] Mason H S, Lam D M, Arntzen C J. Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci, 1992, 89(24): 11745-11749.
[18] Fischer R, Vaquero-Martin C, Sack M, et al. Towards molecular farming in the future:transient protein expression in plants. Biotechnol Appl Biochem, 1999, 30(2): 113-116.
[19] Shadwick F S, Doran P M. Infection, propagation, distribution and stability of plant virus in hairy root cultures. J Biotechnol, 2007, 131(3): 318-329.
[20] Márquez-Escobar V A, Tirado-Mendoza R, Noyola D E, et al. HRA2pI peptide: a fusion inhibitor for human metapneumovirus produced in tobacco plants by transient transformation. Planta, 2015, 242(1): 69-76.
[21] Fischer R, Emans N. Molecular farming of pharmaceutical proteins.Transgenic Res, 2000, 9(4-5): 279-299.
[22] Zhang G G, Rodrigues L, Rovinski B, et al. Production of HIV-1 p24 protein in transgenic tobacco plants. Mol Biotechnol, 2002, 20(2): 131-136.
[23] Daniell H, Khan M S, Allison L. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci, 2002, 7(2): 84-91.
[24] Staub J M, Carcia B, Graves J, et al. High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol, 2000, 18(3): 333-338.
[25] Fernández-San Millán A, Mingo-Castel A, Miller M, et al. A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol, 2003, 1(2): 77-79.
[26] Daniell H, Lee S B, Panchal T, et al. Expression of the native cholera B toxin subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol, 2001, 311(5): 1001-1009.
[27] Tregoning J S, Nixon P, Kuroda H, et al. Expression of tetanus toxin fragment C in tobacco chloroplasts. Nucleic Acids Res, 2003, 31(4): 1174-1179.
[28] Leelavathi S, Gupta N, Maiti S, et al. Overproduction of an alkali- and thermo- stable xylanase in tobacco chloroplasts and efficient recovery of the enzyme. Mol Breed, 2003, 11(1): 59-67.
[29] Kay E, Vogel T M, Bertolla F, et al. Insitu transfer of antibiotic resistance genes from transgenic tobacco plants to bacteria. Appl Environ Microbiol, 2002, 68(7): 3345-3351.
[30] Jobling S A, Jarman C, Teh M M, et al. Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat Biotechnol, 2003, 21(1): 77-80.
[31] Albarracín R M, Becher M L, Farran I, et al. The fusion of Toxoplasma gondii SAG1 vaccine candidate to Leishmania infantum heat shock protein 83-kDa improves expression levels in tobacco chloroplasts. Biotechnol J, 2015, 10(5): 748-759.
[32] Schillberg S, Zimmermann S, Findlay K, et al. Plasma membrane display of anti-viral single chain Fv fragments confers resistance to tobacco mosaic virus. Molecular Breeding, 2000, 6(3):317-326.
[33] Maldaner F R, Aragão F J, dos Santos F B, et al. Dengue virus tetra-epitope peptide expressed in lettuce chloroplasts for potential use in dengue diagnosis. Appl Microbiol Biotechnol, 2013, 97(13): 5721-5729.
[34] Chen X, Liu J. Generation and immunogenicity of transgenic potato expressing the GP5 protein of porcine reproductive and respiratory syndrome virus. J Virol Methods, 2011, 173(1): 153-158.
[35] De Guzman G, Walmsley A M, Webster D E, et al. Hairy roots cultures from different Solanaceous species have varying capacities to produce E. coli B-subunit heat-labile toxin antigen. Biotechnol Lett, 2011, 33(12): 2495-2502.
[36] Hood E E, Witcher D R, Maddock S. Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed, 1997, 3(4): 291-306.
[37] Witcher D R, Hood E E, Peterson D, et al. Commercial production of β-glucuronidase(GUS): a model system for the production of proteins in plants. Mol Breed, 1998, 4(4): 301-312.
[38] Hood E E, Woodard S L, Horn M E. Monoclonal antibody manufacturing in transgenic plants- myths and realities. Curr Opin Biotechnol, 2002, 13(6): 630-635.
[39] Elizabeth E H. From green plants to industrial enzymes. Enzyme & Microbial Technol, 2002, 30(3): 279-283.
[40] Guerrero-Andrade O, Loza-Rubio E, Olivera-Flores T, et al. Expression of the Newcastle disease virus fusion protein in transgenic maize and immunological studies. Transgenic Res, 2006, 15(4): 455-463.
[41] Stöger E, Vaquero C, Torres E, et al. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol, 2000, 42(4): 583-590.
[42] Fu G, Grbic V, Ma S, et al. Evaluation of somatic embryos of alfalfa for recombinant protein expression. Plant Cell Rep, 2015, 34(2): 211-221.
[43] Giddings G. Transgenic plants as protein factories. Curr Opin Biotechnol, 2001, 12(5): 450-454.
[44] Agres T. Global Pharmaceutical Market to Double in Value to US$1.3 Trillion by 2020 PharmaAsia. .http://www.pharmaasia.com/2007/08/report-global-pharmaceutical-market-to-double-in-value-to-us1-3-trillion-by-2020/.

[1] XIE Wen-qi, MA San-mei, WANG Yong-fei, SUN Xiao-wu. Status, Problems and Strategies of Transgenic Tomatoes for Oral Vaccine[J]. China Biotechnology, 2014, 34(10): 94-100.
[2] JIANG Ying, LIU Xiu-Meng, DU Mei-Li, SHU Hai-Lin, LI Wei, LI Hai-Yan, LI Jiao-Kun. Plant Expression System Progress of Recombinant Proteins[J]. China Biotechnology, 2010, 30(02): 109-114.
[3] JIN Li-Xin- Diao-Ling-Xia. Research Progress, Bottlenecks and Strategies in the Plant Bioreactor[J]. China Biotechnology, 2009, 29(05): 104-110.
[4] . Recent Progress on Plant Bioreactor Expressing Pharmaceutical Proteins[J]. China Biotechnology, 2008, 28(9): 135-143.
[5] . Advances and Characters in the Expression of Foreign Proteins in Bacillus Megaterium[J]. China Biotechnology, 2008, 28(4): 93-97.