Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology
    
Research Progresses on TRAF7
WAN Chun-hong1, ZHANG Zhi1,2, LI Sheng-na1, PENG Yi-yuan2, XU Liang-guo1,2
1. College of Life Science, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China;
2. Key Laboratory of Fuctional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
Download: HTML   PDF(1266KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family was originally identified as signaling adaptors that directly bind to the cytoplasmic regions of receptors of the TNF-R superfamily. TRAFs have also been identified to function in signaling for TLRs, NLRs, RLRs, etc. TRAF7, the most recently identified member, acts as an E3 ubiquitin ligase with its conserved RING finger domain, essential for signal transduction pathways mediated by TNFR and TLR2. In addition, TRAF7 also regulates the activation of cellularstress pathways, as well as unconventional ubiquitination events, the differentiation of muscle tissue and tumorigenesis. The most recent advances in the understanding of TRAF7 function and the biological processes this protein is involved in.



Key wordsCell differentiation      Tumorigenesis      Apoptosis      TRAF7      Post-translational modification     
Received: 08 October 2015      Published: 01 December 2015
ZTFLH:  Q291  
Cite this article:

WAN Chun-hong, ZHANG Zhi, LI Sheng-na, PENG Yi-yuan, XU Liang-guo. Research Progresses on TRAF7. China Biotechnology, 2016, 36(3): 93-101.

URL:

https://manu60.magtech.com.cn/biotech/DOI:10.13523/j.cb.20160314     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I3/93

[1] Bradley J R, Pober J S. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene, 2001, 20(44):6482-6491.
[2] Chung J Y, Park Y C, Ye H, et al. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci, 2002, 115(Pt 4):679-688.
[3] Thomas G S, Zhang L, Blackwell K, et al. Phosphorylation of TRAF2 within its RING domain inhibits stress-induced cell death by promoting IKK and suppressing JNK activation. Cancer Res, 2009, 69(8):3665-3672.
[4] Xu L G, Li L Y, Shu H B. TRAF7 potentiates MEKK3-induced AP1 and CHOP activation and induces apoptosis. J Biol Chem, 2004, 279(17):17278-17282.
[5] Bouwmeester T, Bauch A, Ruffner H, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol, 2004, 6(2):97-105.
[6] Morita Y, Kanei-Ishii C, Nomura T, et al. TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation. Mol Biol Cell, 2005, 16(11):5433-5444.
[7] Zimmer J, Lim J H, Jono H, et al. Tumor suppressor CYLD acts as a negative regulator for non-typeable haemophilus influenza-induced inflammation in the middle ear and lung of mice. PLoS One, 2007, 2(10):e1032.
[8] Alvarez S E, Harikumar K B, Hait N C, et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature, 2010, 465(7301):1084-1088.
[9] Kayagaki N, Phung Q, Chan S, et al. DUBA: a deubiquitinase that regulates type I interferon production. Science, 2007, 318(5856):1628-1632.
[10] Tsikitis1 M, Acosta-Alvear D, Blais A, et al. Traf7, aMyoD1 transcriptional target, regulates nuclear factor-kB activity duringmyogenesis. EMBO Mol Med, 2010, 11(12):969-976.
[11] Zotti T, Uva A, Ferravante A, et al. TRAF7 protein promotes Lys-29-linked polyubiquitination of IkappaB kinase (IKKgamma)/NF-kappaB essential modulator (NEMO) and p65/RelA protein and represses NF-kappaB activation. J Biol Chem, 2011, 286(26):22924-22933.
[12] Yoshida H, Jono H, Kai H, et al. The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7. J Biol Chem, 2005, 280(49):41111-41121.
[13] Oh Y, Chung K C. UHRF2, a ubiquitin E3 ligase, acts as a small ubiquitin-like modifier E3 ligase for zinc finger protein 131. J Biol Chem, 2013, 288(13):9102-9111.
[14] Nakamura K, Johnson G L. PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway. J Biol Chem, 2003, 278(39):36989-36992.
[15] Scudiero I, Zotti T, Ferravante A, et al. Tumor necrosis factor (TNF) receptor-associated factor 7 is required for TNFalpha-induced Jun NH2-terminal kinase activation and promotes cell death by regulating polyubiquitination and lysosomal degradation of c-FLIP protein. J Biol Chem, 2012, 287(8):6053-6061.
[16] Chang L, Kamata H, Solinas G, et al. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell, 2006, 124(3):601-613.
[17] Yang J K. FLIP as an anti-cancer therapeutic target. Yonsei Medical Journal, 2008, 49(1):19.
[18] Chen Z J. Ubiquitin Signaling in the NF-κB Pathway. Nat Cell Biol, 2005, 7(8):758-765.
[19] Clark V E, Erson-Omay E Z, Serin A, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science, 2013, 339(6123):1077-1080.
[20] Reuss D E, Piro R M, Jones D T, et al. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol, 2013, 125(3):351-358.
[21] Johnson M D, O'Connell M J, Pilcher W, et al. Fibroblast growth factor receptor-3 expression in meningiomas with stimulation of proliferation by the phosphoinositide 3 kinase-Akt pathway. J Neurosurg, 2010, 112(5):934-939.
[22] Wrobel G, Roerig P, Kokocinski F, et al. Microarray-based gene expression profiling of benign, atypical and anaplastic meningiomas identifies novel genes associated with meningioma progression. Int J Cancer, 2005, 114(2):249-256.
[23] Goutagny S, Yang H W, Zucman-Rossi J, et al. Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin Cancer Res, 2010, 16(16):4155-4164.
[24] Brastianos P K, Horowitz P M, Santagata S, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet, 2013, 45(3):285-289.
[25] Kim E S, Shohet J M. Reactivation of p53 via MDM2 inhibition. Cell Death Dis, 2015, 6(10):e1936.
[26] Patocs A, Zhang L, Xu Y, et al. Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med, 2007, 357(25):2543-2551.
[27] Wang L, Wang L, Zhang S, et al. Downregulation of ubiquitin E3 ligase TNF receptor-associated factor 7 leads to stabilization of p53 in breast cancer. Oncol Rep, 2013, 29(1):283-287.
[28] Wu J, Liu S, Liu G, et al. Identification and functional analysis of 9p24 amplified genes in human breast cancer. Oncogene, 2012, 31(3):333-341.
[29] Nwabo Kamdje A H, Seke Etet P F, Vecchio L, et al. Signaling pathways in breast cancer: therapeutic targeting of the microenvironment. Cell Signal, 2014, 26(12):2843-2856.
[30] Napetschnig J, Wu H. Molecular basis of NF-kappaB signaling. Annu Rev Biophys, 2013, 42:443-468.
[31] Boehm D, Bacher J, Neumann H P H. Gross genomic rearrangement involving the TSC2-PKD1 contiguous deletion syndrome: characterization of the deletion event by quantitative polymerase Chain reaction deletion assay. American Journal of Kidney Diseases, 2007, 49(1):e11-e21.
[32] Libby P, Ridker P M, Hansson G K. Progress and challenges in translating the biology of atherosclerosis. Nature, 2011, 473(7347):317-325.
[33] Wang Y, Wang F, Wu Y, et al. MicroRNA-126 attenuates palmitate-induced apoptosis by targeting TRAF7 in HUVECs. Mol Cell Biochem, 2015, 399(1-2):123-130. transduction pathway.Nat Cell Biol, 2004, 6(2):97-105. [6]Morita Y, Kanei-Ishii C, Nomura T, et al.TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation.Mol Biol Cell, 2005, 16(11):5433-5444. [7]Zimmer J, Lim J H, Jono H, et al.Tumor Suppressor CYLD Acts as a Negative Regulator for Non-Typeable Haemophilus influenza-Induced Inflammation in the Middle Ear and Lung of Mice.PLoS ONE, 2007, 2(10):e1032-. [8]Alvarez S E, Harikumar K B, Hait N C, et al.Sphingosine-1-phosphate is a missing cofactorfor the E3 ubiquitin ligase TRAF2.Nature, 2010, 465(7301):1084-1088. [9]Kayagaki N, Phung Q, Chan S, et al.DUBA: a deubiquitinase that regulates type I interferon production.Science, 2007, 318(5856):1628-1632. [10]Mary Tsikitis1 D A-A, Alexandre Blais, EricI.Traf7, aMyoD1 transcriptional target, regulates nuclear factor-kB activity duringmyogenesis. EMBO Mol Med, 2010, 11:969-976.., , :-. [11]Zotti T, Uva A, Ferravante A, et al.TRAF7 protein promotes Lys-29-linked polyubiquitination of IkappaB kinase (IKKgamma)NF-kappaB essential modulator (NEMO) and p65RelA protein and represses NF-kappaB activation.J Biol Chem, 2011, 286(26):22924-22933. [12]Yoshida H, Jono H, Kai H, et al.The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7.J Biol Chem, 2005, 280(49):41111-41121. [13]Oh Y, Chung K C.UHRF2,a ubiquitin E3 ligase,acts as a small ubiquitin-like modifier E3 ligase for zinc finger protein 131.J Biol Chem, 2013, 288(13):9102-9111. [14]Nakamura K, Johnson G L.PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway.J Biol Chem, 2003, 278(39):36989-36992. [15]Scudiero I, Zotti T, Ferravante A, et al.Tumor necrosis factor (TNF) receptor-associated factor 7 is required for TNFalpha-induced Jun NH2-terminal kinase activation and promotes cell death by regulating polyubiquitination and lysosomal degradation of c-FLIP protein.J Biol Chem, 2012, 287(8):6053-6061. [16]Chang L, Kamata H, Solinas G, et al.The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover.Cell, 2006, 124(3):601-613. [17]Yang J K.FLIP as an Anti-Cancer Therapeutic Target.Yonsei Medical Journal, 2008, 49(1):19-. [18]Chen* Z J.Ubiquitin Signaling in the NF-κB Pathway.Nat Cell Biol, 2005, 7(8):758-765. [19]Clark V E, Erson-Omay E Z, Serin A, et al.Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7,KLF4,AKT1,and SMO.Science, 2013, 339(6123):1077-1080. [20]Reuss D E, Piro R M, Jones D T, et al.Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations.Acta Neuropathol, 2013, 125(3):351-358. [21]Wang L, Wang L, Zhang S, et al.Downregulation of ubiquitin E3 ligase TNF receptor-associated factor 7 leads to stabilization of p53 in breast cancer.Oncol Rep, 2013, 29(1):283-287. [22]Wu J, Liu S, Liu G, et al.Identification and functional analysis of 9p24 amplified genes in human breast cancer.Oncogene, 2012, 31(3):333-341. [23]Boehm D, Bacher J, Neumann H P H.Gross Genomic Rearrangement Involving the TSC2-PKD1 Contiguous Deletion Syndrome: Characterization of the Deletion Event by Quantitative Polymerase Chain Reaction Deletion Assay.American Journal of Kidney Diseases, 2007, 49(1):e11-e21. [24]Libby P, Ridker P M, Hansson G K.Progress and challenges in translating the biology of atherosclerosis.Nature, 2011, 473(7347):317-325. [25]Wang Y, Wang F, Wu Y, et al.MicroRNA-126 attenuates palmitate-induced apoptosis by targeting TRAF7 in HUVECs.Mol Cell Biochem, 2015, 399(1-2):123-130.

[1] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[2] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[3] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[4] Ye LIU,Yue PAN,Wei ZHENG,Jing HU. miR-186-5p is Expressed Highly in Ethanol-induced Cardiomyocytes and Regulates Apoptosis by Target Gene XIAP[J]. China Biotechnology, 2019, 39(5): 53-62.
[5] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[6] Wen-wen SHI,Lei ZHANG. Current Research of Micro Mechanical Environmental Effects on Mesenchymal Stem Cells’ Differentiation[J]. China Biotechnology, 2018, 38(8): 76-83.
[7] Xiang HUANG,Jie YANG,Pei-yan HE,Zhi-hui WU,Hui-lan ZENG,Xin-Ning WANG,Jian-wei JIANG. Molecular Mechanism of Inducing 2774-C10 Cell Apoptosis and G1/S Cell Cycle Arrest by Ethanol Extract from Elephantopus mollis H.B.K.[J]. China Biotechnology, 2018, 38(4): 17-23.
[8] DAI Li-ting, WU Zhong-nan, HUANG Xiang, YANG Jie, ZENG Hui-lan, WANG Guo-cai, JIANG Jian-wei. Molecular Mechanism of Inducing GLC-82 Cells Apoptosis by Ethanol Extract from Wedelia prostrate(Hook.et Arn.) Hemsl[J]. China Biotechnology, 2017, 37(8): 1-7.
[9] XU An-jian, LI Yan-meng, LI Si-wen, WU Shan-na, ZHANG Bei, HUANG Jian. The Effect of PHP14 Knockdown on Lung Cancer Cells Apoptosis and Its Mechanism[J]. China Biotechnology, 2017, 37(7): 12-17.
[10] LI Yan-wei, MA Yi, HAN Lei, XIAO Xing, DANG Shi-ying, WEN Tao, WANG De-hua, FAN Zhi-yong. A Preliminary Study on Fas Apoptosis Inhibitory Molecule FAIM 1 Inducing and Simple Obesity[J]. China Biotechnology, 2017, 37(6): 37-42.
[11] BAI Xin-yan, WEN Li-min, WANG Yu-jing, WANG Hai-long, XIE Jun, GUO Rui. ANKRD49 Inhibits UV-induced Apoptosis of GC-1 Cells by Up-regulating Bcl-xL[J]. China Biotechnology, 2017, 37(4): 40-47.
[12] LI Zhen-hua, LI Cui-ping, ZHANG Xiang-qiang, DAI Li-ting, TANG Meng-si, WANG Guo-cai, JIANG Jian-wei, CAO Ming-rong. EM-3 Targets Stat3 to Induce Apoptosis, G2/M Cell Cycle Arrest and Reduce the Proportion of SP Cells in Nasopharyngeal Carcinoma[J]. China Biotechnology, 2016, 36(3): 1-10.
[13] ZHANG Ying-min, ZHAO Na, LI Yong-fang, MENG Fan-xiu, ZHANG Qi, GAO Ran-peng, ZHANG Yue-hong, YU Bao-feng, GUO Rui, WANG Hai-long, XIE Jun, XU Jun. Targeted Treatment of Hepatoma Using HSV-TK Suicide Gene with The PBI-SUR-TK Vector[J]. China Biotechnology, 2016, 36(2): 16-21.
[14] SHEN Peng-fei, WANG Bin, XIE Zi-kang, ZHENG Chong, QU Yu-xing. Effects of Cartilage Oligomeric Matrix Protein Overexpression on BMP-2 Induced Cell Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2016, 36(10): 1-7.
[15] CHEN Na-zi, JIANG Chao, LI Xiao-kun. Role of Endoplasmic Reticulum Stress in Diseases[J]. China Biotechnology, 2016, 36(1): 76-85.