Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (11): 85-91    DOI: 10.13523/j.cb.20151112
    
Research Advance on Exopolysaccharides Synthesized by Lactic Acid Bacteria
TONG Liang-qin, QU Ya-jun, CHEN Min
Natioal Glycoengineering Research Center, State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, China
Download: HTML   PDF(603KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Exopolysaccharides (EPS)of lactic acid bacteria (LAB)are natural polymers produced by LAB. As a new type of natural food additives, EPS of LAB catch the attention of researchers by its immense physiological function and industrial potential. But due to the differences between the composition and function of EPS, It is difficult to establish universal methods and criterions of detection. Also, how to improve the yield of EPS is a great challenge.The genetics of EPS, structure analysis, structure-function relationship, biological activity and further researches will be summarized.



Key wordsExopolysaccharides      Lactic acid bacteria      Biological activity      Structure analysis      Structure-function relationship     
Received: 17 June 2015      Published: 25 November 2015
ZTFLH:  Q53  
Cite this article:

TONG Liang-qin, QU Ya-jun, CHEN Min. Research Advance on Exopolysaccharides Synthesized by Lactic Acid Bacteria. China Biotechnology, 2015, 35(11): 85-91.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20151112     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I11/85

[1] Majamaa H, Isolauri E, Saxelin M, et al. Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. Journal of Pediatric Gastroenterology and Nutrition , 1995,20(3):333-338.
[2] 苗君莅,于鹏,肖杨,等. 胞外多糖的研究现状与展望. 食品科技, 2014, 39(10):226-231. Miao J L, Yu P, Xiao Y,et al. Advances and prospect of exopolysaccharides. Food science and technology, 2014,39(10):226-231.
[3] Saeed A, Hayek A, Ibrahim. Current limitations and challenges with lactic acid bacteria: a review. Food and Nutrition Science, 2013, 4(11):73-87.
[4] Seema P, Avishek M, Arum G. Potentials of exopolysaccharides from lactic acid bacteria. Indian Journal of Microbiology, 2012,52(1):3-12.
[5] Stingle F, Neeser J R, Mollet B. Identification and characterization of the eps (exopolysacharride) gene cluster from Streptococcus thermopilus Sfi6. Journal of Bacteriology, 1996, 178(6):1680-1690.
[6] Van Kranenburg R, Marvgg J D, et al. Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Molecular Microbiology, 1997,24(2) :387-397.
[7] Lamothe G T, Jolly L, Mollet B,et al. Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrneckii subsp bulgaricus. Archives of Microbiology, 2002, 178(3):218-228.
[8] 田政, 王辑, 郑喆, 等. 乳酸菌胞外多糖的结构及功能特性研究进展. 食品安全质量检测学报, 2013, 4(3):783-788. Tian Z, Wang J, Zheng Z, et al. Research advances on structure and function of exopolysaccharides produced by lactic acid bacteria. Journal of Food Safety & Quality, 2013,4(3):783-788.
[9] Germond J E, Delley M, D'Amico N, et al. Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39. European Journal of Biochemistry, 2001, 268(19):5149-5156.
[10] 胡盼盼, 宋微,杜明,等. 乳酸菌胞外多糖的研究进展. 粮油食品科技, 2014,24(5):87-91. Hu P P, Song W, Du M,et al. Research progress in exopolysaccharides produced by lactic acid bacteria. Science and Technology of Cereals:Oils and Food, 2014,24(5):87-91.
[11] Sutherland I. Polysaccharases for microbial exopolysaccharides. Carbohydr Polymers,1999, 38(4):319-328.
[12] Ruussenaars H J, Stngele F, Hartmans S. Biodegradability of food-associated extracellular polysaccharides. Current Microbiology, 2000, 40(3):194-199.
[13] Breedveld M, Bonting K, Dijkhuizen L. Mutational analysis of exopolysaccharide biosynthesis by Lactobacillus sakei 0-1. Fems Microbiology Letters, 1998,169(2):241-249.
[14] Grobben G J, Smith M R, Sikkema J, et al. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. Applied Microbiol Biotechnology, 1996, 46(3):279-284.
[15] 王鹏, 江晓路, 江艳华,等. 细菌胞外多糖构效关系及特性的研究[J] 食品科学, 2005, 26(11):257-260. Wang P, Jiang X L, Jiang Y H, et al. Review on research and development on structure-function relationship and characterstics of bacterial exopolysaccharides. Food Science, 2005,26(11):257-260.
[16] 颜炳祥, 潘道东, 曾小群. 乳酸菌胞外多糖硒化修饰及其抗氧化活性研究. 中国食品学报, 2012, 12(2):15-23. Yan B X, Pan D D, Zeng X Q. Study on selenium modification and antioxidant activity of lactic acid bacteria exopolusaccharides. Journal of Chinese Institute of Food Science, 2012,12(2):15-23.
[17] 王雪. AAP I-a黑木耳多糖的分离纯化及其抗衰老功能的研究.哈尔滨:哈尔滨工业大学, 生命科学学院,2009. Wang X. Study on Purification and Anti-aging Function of Polysaccharides from Auriculria auricula. Harbin:Harbin Institute of Technology, School of Life Science,2009.
[18] 贺珍俊. 多糖的分子修饰与抗凝血活性. 呼和浩特:内蒙古大学,生命科学学院,2004. He Z J . Molecule Modification of Polysaccharides and Anticoagulation Activity. Hohhot:Inner Mongolia University,School of Life Science,2004.
[19] Franz G, Alban S. Structure-activity relationship of antithrombotic polysaccharide derivatives. International Journal of Biological Macromolecules,1995,17(6):311-314.
[20] 邱琳, 辛现良, 耿美玉. 多糖构效关系研究进展. 现代生物医学进展, 2009, 9(9):1764-1768. Qiu L, Xin X L, Geng M Y. Advances in the structure-function relationship of polysaccharides. Progress in Modern Biomedicine, 2009,9(9):1764-1768.
[21] 周金黄, 王建华. 中药药理与临床研究进展.第三册.北京:军事医学科学出版社, 1996:179. Zhou J H, Wang J H. Progress in Pharmacology and Clinical Research of Chinese Medicine. Volume 3. Beijing:Military Medical Science Press,1996:179.
[22] Faber E J, van Haaster D J, Kamerling J P, et al. Structure of the extracellular polysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus 291. Carbohydrate Research, 2001,331(2):183-194.
[23] Staaf M, Yang Z, Huttunen E, et al. Structural elucidation of the viscous exopolysaccharide produced by Lactobacillus helveticus Lb161. Carbohydrate Research, 2000,326(2):113-119.
[24] Navarini L, Abatangelo A, Bertocchi C, et al. Isolation and characterization of the exopolysaccharide produced by Streptococcus thermophilus SFi20. Int J Biol Macromol, 2001,28(3):219-226.
[25] Low D, Ahlgren J A, Home D, et al. Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention. Applied and Environmental Microbiology, 1998, 64(6):2147-2151.
[26] Fuber E J, Kamerling J P, Vliegenthat J F, et al. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohudrate Research, 1998,310(4):269-276.
[27] Hong S H, Marshall R T. Natural exopolysaccharides enhance survival of lactic acid bacteria in frozen diary desserts. Journal of Dairy Science, 2001, 84(6):1367-1374.
[28] van Casteren W H, Dijkema C. Structural characterisation and enzymic modification of the exopolysaccharide produced by Lactococcus lactis subsp.cremoris B39. Carbohydrate Research, 2000,324(3):170-181.
[29] Vuyst D, Bart D. Heteropolysaccharides from lactic acid bacteria. Fems Microbiology Reviews, 1999, 23(2): 153-177.
[30] Kitazawa H,Toba T, Itoh T, et al. Antitumoral activity of slime-forming encapsulated Lactococcus lactis subsp. cremoris isolated from Scandinavian ropy sour milk, "viili". Animal Science and Technology (Japan), 1991, 62(3): 277-283.
[31] Kitazawa H, Yamaguchi T, Itoh T. B-cell mitogenic activity of slime products produced from slime-forming encapsulated Lactococcus lactis subsp. cremoris. Journal of Dairy Science, 1992,75(1):2946-2951.
[32] Ismail B, Nampoothiri K M. Exposition of antitumor activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510. Biologia, 2013,68(6):1041-1045.
[33] 秦晓萌,张远森,柳陈坚,等. 乳酸菌胞外多糖生理功能及合成途径的研究进展.食品工业科技, 2015,36(4):389-399. Qin X M, Zhang Y S, Liu C J,et al. Progress on the physiological function and synthesis pathways of lactic acid bacteria exopolysaccharide. Science and Technology of Food, 2015,36(4):389-399.
[34] 刘佳,潘道东. 硒化乳酸菌胞外多糖对小鼠腹腔巨噬细胞免疫功能的影响. 营养学报, 2013, 35(1):35-38. Liu J, Pan D D. The immunomodulatory effects of selenium exopolysaccharide on mouse peritoneal macrophages. Acta Nutrimenta Sinica, 2013, 35(1):35-38.
[35] 顾笑梅,王富生,孔健,等. 乳酸菌Z222产胞外多糖对免疫细胞功能的影响. 中华微生物学和免疫学杂志, 2003,2(43):251-256. Gu X M, Wang F S, Kong J,et al. Effect of EPS I produced by Lactobacillus strain Z222 on cellular immunity. Chinese Journal of Microbiology and Immunology, 2003,2(43):251-256.
[36] 顾瑞霞. 乳酸菌胞外多糖生物合成及生理功能特性的研究. 哈尔滨:东北农业大学,生命科学学院,2000:77-85. Gu R X. Studies on synthesis and physiological functions of exopolysaccharides of lactic acid bacteria. Harbin: Northeast Agricultural University,School of Life Science,2000:77-85.
[37] Chong E S. Apotential role of probiotics in colorectal caention:review of possible mechanisms of action. World Journal of Microbiology and Biotechnolncer Prevogy, 2014,30(2):351-374.
[38] 李超, 王春凤, 杨桂连. 乳酸菌胞外多糖肠道粘附及免疫调节作用研究进展. 食品科学, 2014, 35(11):314-318. Li C, Wang C F, Yang G L. Progress in intestinal adhension and immunoregulatory effect of extracellular polysaccharides of lactic acid bacteria. Food Science, 2014,35(11):314-318.
[39] Looijesteijn P J, Trapet L, de Vries, et al. Physiological function of exopolysaccharides produced by Lactococcus lactis. International Journal of Food Microbiology, 2001, 64(1-2):71-80.
[40] Germond J E, Delley M, D'Amico N, et al. Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39. Eur Journal of Biochemistry, 2001, 268(19):5149-5156.
[41] Monaco R D, Torrieri E, Pepe O, et al. Effect of sourdough with exopolysaccharide (EPS)-producing lactic acid bacteria (LAB)on sensory quality of bred during shelf life. Food and Bioprocess Technology, 2015, 8(3):691-701.

[1] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[2] Ying CHEN,Hai-peng XIAO,Xiao-yan ZHANG,Qing-wei GONG,Li MA,Wen-jia LI,Xiao-feng CHEN. Expression and Characterization of Recombinant GLP-1-IgG4-Fc Fusion Protein[J]. China Biotechnology, 2018, 38(7): 58-66.
[3] WANG Dong-dong, ZHANG Guo-li, YUE Yu-huan, WU Guang-mou, TIAN Yuan, LIU Yu-ling, JI Yuan-gang, WANG Jing-peng, LI Jian, PAN Rong-rong, MA Hong-yuan. Construction, Expression and Preliminary Study on Activity of Human Bivalent Single Chain Antibody Against the Alpha-toxin of Clostridium perfringens Type A[J]. China Biotechnology, 2017, 37(4): 18-25.
[4] GAO Xiang-lei, LIN Shu-shan, GONG Qing-wei, PAN Lan, MA Li, FENG Yan, LIN Xiao-que, ZENG Jian, LI Wen-jia, CHEN Xiao-feng, CHEN Ying. Purification and Characterization of Recombinant Human Glucagon-like Peptide-1 Analogue[J]. China Biotechnology, 2016, 36(12): 15-20.
[5] LI Cui-lin, ZHANG Fan, CHEN Dan-yang, WANG Hao, GUO Qiang, DU Jun. Study of Prokaryotic Expression and Biological Activity of Homo sapiens Kras Protein[J]. China Biotechnology, 2014, 34(8): 1-6.
[6] SUN Shao-fei, WANG Bei-lei, YUAN Ting, ZHANG Bing, GUO Gang, ZHANG Ru. Expression and Fusion Protein TAT-NLS-Nkx6.2 in E.coli and Its Purification and Biological Analysis[J]. China Biotechnology, 2013, 33(9): 24-30.
[7] WU Ru-juan, ZHANG Ri-jun. The Progress of Hybrid Peptides on Design and Biological Activity[J]. China Biotechnology, 2013, 33(9): 94-100.
[8] ZHANG Qiu-xiang, HOU Hui-li, LU Ying, CHEN Wei, ZHONG Jin. Preparation and Immunogenicity of Streptococcus Suis Oral Vaccine in Mice[J]. China Biotechnology, 2013, 33(7): 25-30.
[9] HUANG Zhen-rong, ZHANG San-jun, QIAN Min, REN Hua. Expression, Purification and Biological Activity of Escherichia coli RecQ Helicase[J]. China Biotechnology, 2013, 33(3): 21-27.
[10] ZENG Zhu, CHEN Li-li, ZUO Fang-lei, ZHAO Wei, CHEN Shang-wu. Advance in Lactic Acid Bacteria Sugar-induced Gene Expression[J]. China Biotechnology, 2013, 33(10): 131-137.
[11] SONG Lin-tao, JIANG Chao, LI Xiao-kun. The Development of the Study on Fibroblast Growth Factor 18[J]. China Biotechnology, 2012, 32(09): 95-100.
[12] GUO Yun-ping, SUN Lu, ZHANG Li-jian, WANG Zeng-lu, GAO Chao, YANG Qiang, LIU Yi, ZHANG Ying-qi, QU Yan, TAO Ling. Expression, Purification and Characterization of Non-taged Recombinant Human Thioredoxin[J]. China Biotechnology, 2012, 32(08): 62-67.
[13] NI Bei-bei, FAN Zhen-zhen, CHEN Hong, HUANG Bing-ren. Fusion Protein Identification as Polymer and Its Analysis of Structure[J]. China Biotechnology, 2012, 32(07): 1-7.
[14] WU Xiu-xiu, LV Xiao-hui, HU Ya-dong, XIE Chun-fang, LIU Da-ling, YAO Dong-sheng. Directed Evolution in vitro of Armillariella tabescens MAN47 β-Mannanase with Higher Thermalstability and Acid Tolerance[J]. China Biotechnology, 2012, 32(03): 83-90.
[15] LI Juan, YU Rong-jie, WANG Jing-jing, HUANG Lin, LIU Xiao-fei. Biological Effects of Recombinant PAC1-EC1(N) on the Viability of Cell Lines with Different PAC1 Isoforms[J]. China Biotechnology, 2011, 31(06): 22-28.