Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (06): 130-134    DOI:
    
Research Progress on Aminoacyl-tRNA Synthetases
Download: HTML   PDF(408KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aminoacyl-tRNA synthetases catalyze the attachment of specific amino acids to their cognate tRNAs, thereby ensuring the faithful translation of genetic code. In addition to their enzymatic function, these ancient and conserved enzymes have been discovered to have many additional functions in mammalian cells. As a result, several application aspects have been found. Aminoacyl-tRNA synthetases have attracted interest as essential and novel targets involved in bacterial protein synthesis, and they are now being pursued as targets for new antibiotic drugs. Engineered aminoacyl-tRNA synthetases are uesed for site-specifically incorporation of non-natural amino acids. The results with animals suggest that therapeutic applications for many human diseases such as tumor are possible with the cognate tRNA synthetases.



Key wordsaminoacyl-tRNA synthetase;aminoacylation;inhibitor     
Received: 22 August 2008      Published: 02 July 2009
ZTFLH:  Q816  
Corresponding Authors: ZHOU Qin-hua     E-mail: qinhuazhou_0522@163.com
Cite this article:

ZHOU Qi-Hua-1, ZHOU Cheng-Mei-2. Research Progress on Aminoacyl-tRNA Synthetases. China Biotechnology, 2009, 29(06): 130-134.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I06/130

[1] Hausmann C D, Ibba M. AminoacyltRNA synthetase complexes: molecular multitasking revealed. FEMS Microbiol Rev,2008,32(4): 705~721 [2] Han J M, Kim J Y, Kim S. Molecular network and functional implications of macromolecular tRNA synthetase complex. Biochem Biophys Res Commun, 2003,303(4):985~993 [3] Greenberg Y, King M, Kiosses W B, et al. The novel fragment of tyrosyl tRNA synthetase, miniTyrRS, is secreted to induce an angiogenic response in endothelial cells. FASEB J, 2008,22(5):1597~1605 [4] Pohlmann J, BrtzOesterhelt H. New aminoacyltRNA synthetase inhibitors as antibacterial agents. Curr Drug Targets Infect Disord, 2004,4(4):261~272 [5] Kim S, Lee S W, Choi E C, et al. AminoacyltRNA synthetases and their inhibitors as a novel family of antibiotics. Appl Microbiol Biotechnol, 2003,61(4):278~288 [6] Mukai T, Kobayashi T, Hino N, et al. Adding llysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyltRNA synthetases. Biochem Biophys Res Commun, 2008,371(4):818~822 [7] Kiga D, Sakamoto K, Kodama K, et al. An engineered Escherichia coli tyrosyltRNA synthetase for sitespecific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cellfree system. Proc Natl Acad Sci USA, 2002,99(15):9715~9720 [8] Kobayashi T, Sakamoto K, Takimura T, et al. Structural basis of nonnatural amino acid recognition by an engineered aminoacyltRNA synthetase for genetic code expansion. Proc Natl Acad Sci USA, 2005,102(5):1366~1371 [9] Ruan B, Sll D. The bacterial YbaK protein is a CystRNAPro and CystRNA Cys deacylase. J Biol Chem,2005,280 (27):25887~25891 [10] Bailly M, Blaise M, Lorber B, et al. The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNAdependent asparagine biosynthesis. Mol Cel ,2007,28(2):228~239 [11] PraetoriusIbba M, Rogers T E, Samson R, et al. Association between Archaeal prolyl and leucyltRNA synthetases enhances tRNA(Pro) aminoacylation. J Biol Chem, 2005,28 0(28):26099~26104 [12] Karanasios E, Simader H, Panayotou G, et al. Molecular determinants of the yeast Arc1paminoacyltRNA synthetase complex assembly. J Mol Biol,2007,374(4):1077~1090 [13] Guzzo C M, Yang D C. LysyltRNA synthetase interacts with EF1alpha, aspartyltRNA synthetase and p38 in vitro. Biochem Biophys Res Commun,2008,365(4):718~723 [14] 徐敏刚. 亮氨酰tRNA 合成酶和 tRNALeu的相互作用.上海:中国科学院上海生命科学研究院,2004. Xu M G. The interaction between leucyltRNA synthetase and tRNALeu. Shanghai: Shanghai Institutes for Biological Sciences,Chinese Academy of Science, 2004 [15] 刘云清. 大肠杆菌亮氨酰tRNA合成酶编校结构域和其与蛋氨酸和异亮氨酸复合物晶体结构的研究. 上海:中国科学院上海生命科学研究院,2006 Liu Y Q. The crystal structures of the editing domain of E. coli leucyltRNA synthetase and its complexes with methionine and isoleucine. Shanghai: Shanghai Institutes for Biological Sciences,Chinese Academy of Science, 2006 [16] Kowal A K, Kohrer C, RajBhandary U L. Twentyfirst aminoacyltRNA synthetasesuppressor tRNA pairs for possible use in sitespecific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria. Proc Natl Acad Sci USA, 2001,98(5):2268~2273 [17] Tang Y, Tirrell D A. Attenuation of the editing activity of the Escherichia coli leucyltRNA synthetase allows incorporation of novel amino acids into proteins in vivo. Biochemistry, 2002 ,41(34):10635~10645 [18] Kiick K L, Weberskirch R, Tirrell D A. Identification of an expanded set of translationally active methionine analogues in Escherichia coli. FEBS Lett, 2001,502(12):25~30 [19] Rock F L, Mao W, Yaremchuk A, et al. An antifungal agent inhibits an aminoacyltRNA synthetase by trapping tRNA in the editing site. Science,2007,316(5832):1759~1761 [20] Bernier S, Akochy P M, Lapointe J, et al. Synthesis and aminoacyltRNA synthetase inhibitory activity of aspartyl adenylate analogs. Bioorg Med Chem,2005,13(1):69~75 [21] Balg C, Blais S P, Bernier S, et al. Synthesis of betaketophosphonate analogs of glutamyl and glutaminyl adenylate, and selective inhibition of the corresponding bacterial aminoacyltRNA synthetases. Bioorg Med Chem, 2007,15(1):295~304 [22] Otani A, Slike B M, Dorrell M I, et al. A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci USA,2002,99(1) : 178~183 [23] Tzima E, Schimmel P. Inhibition of tumor angiogenesis by a natural fragment of a tRNA synthetase. Trends Biochem Sci, 2006 ,31(1):7~10 [24] Edvardson S, Shaag A, Kolesnikova O, et al. Deleterious mutation in the mitochondrial arginyltransfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet, 2007,81(4): 857~862 [25] Scheper G C, van der Klok T, van Andel R J, et al. Mitochondrial aspartyltRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation.Nat Genet, 2007, 39 (4): 534~539 [26] 't Hart L M, Hansen T, Rietveld I, et al. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene. Diabetes, 2005, 54 (6):1892~1895 [27] 朱斌,王恩多. 氨基酰tRNA 合成酶与神经退行性疾病. 生物化学与生物物理进展, 2007, 34(6): 562~566 Zhu B,Wang E D. Neurodegenerationrelated AminoacyltRNA Synthetases. Progress in Biochemistry and Biophysics, 2007, 34(6): 562~566
[1] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[2] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[3] LI Jia-xin,ZHANG Zheng,LIU He,YANG Qing,LV Cheng-zhi,YANG Jun. Preparation and Drug Release Properties of Keratin-loaded Nanoparticles[J]. China Biotechnology, 2021, 41(8): 8-16.
[4] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[5] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[6] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[7] HE Ruo-yu,LIN Fu-yu,GAO Xiang-dong,LIU Jin-yi. Research and Application Progress of Signal Peptides in Escherichia coli Secretion Systems[J]. China Biotechnology, 2021, 41(5): 87-93.
[8] WANG Guo-qiang,YU Yin-yin,ZENG Hua-hui,WANG Xu-dong,WU Yu-bin,SHANG Li-zhi,LI Yu-lin,ZHANG Yi-qing,ZHANG Xi-xi,ZHANG Zhen-qiang,WANG Yun-long. Preparation of Quality Control Materials for RT-PCR Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Based on MS2 Phage Virus-like Particles[J]. China Biotechnology, 2020, 40(12): 31-40.
[9] XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha. Advances and Applications of Recombinant Mussel Foot Proteins[J]. China Biotechnology, 2020, 40(11): 82-89.
[10] LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody[J]. China Biotechnology, 2020, 40(7): 15-21.
[11] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[12] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[13] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[14] CHEN Qiu-li,YANG Li-chao,LI Hui,WEN Sha,LI Gang,HE Min. Prokaryotic Expression,Purification and Preparation of Polyclonal Antibody of Human Nek2 Protein[J]. China Biotechnology, 2020, 40(3): 31-37.
[15] SUN Si,QIU Yu-lan,YAN Ju-rong,YANG Jing,WU Guang-ying,WANG Lin,XU Wen-chun. Recombinant Plasmid pcDNA3-dnaJ Prime/DnaJ Protein Boost Immunization Induce Th1/Th17 Immune Responses and Protect Mice Against Pneumococcal Infection[J]. China Biotechnology, 2019, 39(12): 9-17.