Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (9): 94-100    DOI:
    
The Progress of Hybrid Peptides on Design and Biological Activity
WU Ru-juan, ZHANG Ri-jun
State Key Laboratory for Animal Nutrition, College of Animal Science and Technology, China Agriculture University, Beijing 100193, China
Download: HTML   PDF(1349KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  With the over-use of antibiotic in feed, antimicrobial peptides (AMPs) attract more and more attention as new medicine because of small molecular, broad antimicrobial spectrum, high activity, heat tolerance, drug resistance and safe. With the deep research in structure, function and antimicrobial mechanism of AMPs, people try to design new hybrid antimicrobial peptides which possess higher antimicrobial activity and broader spectrum. The paper summarizes the progress of hybrid AMPs from the following aspects:design, biology activity and the future focus.

Key wordsHybrid antimicrobial peptides      Biological activity      Parental antimicrobal peptides     
Received: 29 July 2013      Published: 25 September 2013
ZTFLH:  Q939.9  
Cite this article:

WU Ru-juan, ZHANG Ri-jun. The Progress of Hybrid Peptides on Design and Biological Activity. China Biotechnology, 2013, 33(9): 94-100.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I9/94

[1] 王兴顺,耿艺介,李文楚. 抗菌肽抗菌机制及其应用研究进展. 微生物学免疫学进展,2012, 40 (4): 70-75. Wang X SH, Geng Y J, Li W CH. The progress of mechanism and application for antibacterial peptides Progress of Microbial Immunology, 2012, 40 (4): 70-75.
[2] Reddy K V R, Yedery R D, Aranha C. Antimicrobial peptides: premises and promises. Int J Antimicrob Agents, 2004, 24: 536-547.
[3] Boman H,Wade D, Boman A, et a1.Antibacterial and antimicrobial properties of peptides that are cecropin2-melittin hybrids.FEBS Lett, 1989, 259 (1): 103-106.
[4] Andrea G, Giovanna P, Silvia F N. Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol, 2007, 2 (1): 1-33.
[5] 李趣欢, 张文军. 两亲A-螺旋抗菌肽的分子设计研究现状与进展.中国新药杂志, 2005, 14 (9): 1126-1133. Li Q H, Zhang W J. The present station and advance of amphipathicity AMPs on molecular design.Journal of China New Medicine, 2005, 14 (9): 1126-1133.
[6] 王秀青,朱明星,张爱君, 等.天蚕素类杂合肽cecropinA-magajnin突变体的合成以及在毕赤酵母中的分泌表达.东北农业大学学报, 2009, 40 (11):95-98. Wang X Q, Zhu M X, Zhang A J, et al. Design and expression of hybrid peptide cecropinA-magajnin in Pichia pastoris. Academic Journal of Northeast Agricultural University, 2009, 40 (11): 95-98.
[7] Yeaman M R, Yount N Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 2003, 55 (1): 27-55.
[8] Bals R. Epithelial antimicrobial peptides in host defense against infection. Respir Res, 2000, 1 (3): 141-150.
[9] Lemaitre B, Reichhart J M, Hoffmann J A. Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA, 1997, 94 (26): 14614-14619.
[10] Syma K, Peter J. B. Multiscale molecular dynamics simulations of membrane proteins. Biomolecular simulations: Methods and Protocols. Methods in Molecular Biology, 2013, 924:635-637.
[11] Chen H C, Brown J H, Morell J L, et al. Synthetic magainin analogues with improved antimicrobial activity. FEBS Lett, 1988, 236: 462-466.
[12] Ohsaki Y, Gazdar A F, Chen H C, et al. Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res, 1992, 52:3534-3538.
[13] Hancock R E. Cationic peptides:efectors in innate immunity and novel antimicrobials. Lancet Infect Dis, 2001, 1 (3):156-164.
[14] Dathe M, Nikolenko H, Meyer J, et al. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett, 2001, 501: 146-150.
[15] 宋雪莹,冯兴军,李静. 抗菌肽分子设计研究进展. 饲料博览, 2010, 9: 13-15. Song X Y, Feng X J, Li J. The advance of AMPS on molecular design. Feed Expo, 2010, 9: 13-15.
[16] Lee D G, KimH N, Park Y, et al. Design ofnovel analogue peptides with potent antibiotic activity based on the antimicrobial peptide,HP(2-20), derivedfrom N-terminus of Helicobacter pylori ribosomal protein L1.Biochem Aiophys Acta, 2002, 1598 (1,2):185-194.
[17] Christopher E D, Ayman H, Robin A H, et al. Origin of lowmammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides. J Bio Chem, 2008, (4):1-20.
[18] Uematsu N, Matsuzaki K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Biophys J, 2000, 79: 2075-2083.
[19] Matsuzaki K, Harada M, Funakoshi S, et al. Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta, 1991, 1063:162-170.
[20] Matsuzaki K, Mitani Y, Akada K Y, et al. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry, 1998, 37: 15144-15153.
[21] 刘琳,马廷方,祝永强,等. 抗菌肽的结构特征及其与活性的关系. 药物生物技术, 2008, 15(1):64-67. Liu L, Ma T F, Zhu Y Q, et al. The structural character of AMPs and the relationship between structure and activity. Pharmaceutical Biotechnology, 2008, 15 (1): 64-67.
[22] Shin S Y, Kang S W, Lee D G, et al. CRAMP analogues having potent antibiotic activity against bacterial, fungal, and tumor cells without hemolytic activity. Biochem Biophys Res Commun, 2000, 275: 904-909.
[23] Shin, S. Y, Rang, J. H, Hahm, K S. Structure-antibacterial, antitumor and hemolytic activity relationships of cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. J Pept Res, 1999, 53: 82-90.
[24] Lee K, Shin S Y, Kim K, et al. Antibiotic activity and structural analysis of the scorpion derived antimicrobial peptide IsCT and its analogs. Biochem Bioph Res Co, 2004, 323 (2):712-719.
[25] Jaynes J M.Use of genes encoding novel lytic peptides and proteins that enhance microbial disease esistance in plants.Acta Hortic,2007, 336: 33-39.
[26] Boman H G,Hultmark D.Cell free immunity in insects.Ann Rev Microbiol,1987,41:103-126.
[27] Wade D, Andreu D. Antibacterial peptides designed as analogs or hybrids of cecropins andmelittin. Int J Pept Protein Res, 1992, 40 (5): 429-436.
[28] Andreu D, Ubach J, Boman A, et al. Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett, 2002, 24: 347-353.
[29] Shin S Y, Lee M K, Kim k l, et al. Structure-antitumor and hemolytic activity relationships of synthetic peptides derived from cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. J Pept Res, 1997, 50: 279-185.
[30] Strom M B,Hang B E,Rekdal O,et al.Important structural features of 15-residue lactoferricin derivatives and methods for improvements of antimicmbial activity. Biochem Cell Biol,2002,80 (1):65-74.
[31] 冯兴军,李静,赵晓宇, 等,牛乳铁蛋白素-马盖宁杂合抗菌肽的设计、合成及抑菌活性.东北农业大学学报, 2011, 42 (3):105-109. Feng X J, Li J, Zhao X Y, et al. Design, synthesis, antibacterial activity of bovine lactoferrin-maganine hybrid peptide. Academic Journal of Northeast Agricultural University, 2011, 42 (3): 105-109.
[32] Strom M B,Hang B E,Rekdal O,et al.Important structural features of 15-residue lactoferricin derivatives and methods for improvements of antimicmbial activity.Biochem Cell Biol,2002,80 (1):65-74.
[33] Daher, K A, Selsted, M E. Lehrer R I. Direct inactivation of viruses by human granulocyte defensins, Am Soc Microbiol, 1986, 60: 1068-1074.
[34] Wachinger M, Kleinschmidt A, Winder D, et al. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gene Virol, 1998, 79: 731-740.
[35] Andersen, J H, Jenssen H. Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparin sulphate at the cell surface. J Med Syst, 2004, 74 (2): 262-271.
[37] Baker M A, Maloy W L, Zasloff M, et al. Anticancer efficacy of magainin 2 and analogue peptides. Cancer Res, 1993, 53:3052-3057.
[38] Soballe P W, Maloy W L, Myrga M L, et al. Experimental local therapy of human melanoma with lytic magainin peptides. Int J Cancer, 1995, 60:280-284.
[39] Lehmann J, Retz M, Sidhu S S, et al. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur Urol, 2006, 50:141-147.
[40] Moore A J, Devine D A, Bibby M C. Preliminary experimental anticancer activity of cecropins. Pept Res, 1994, 7:265-269.
[41] Yoo Y C, Watanabe S, Watanabe R, et al. Bovine lactoferrin and lactoferricin inhibit tumor metastasis in mice. Adv Exp Med Biol, 1998, 443:285-291.
[42] Mader J S, Salsman J, Conrad D M, et al. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther, 2005, 4:612-624.
[43] Eliassen LT, Berge G, Leknessund A, et al. The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int J Cancer, 2006, 119:493-500.
[44] Eliassen LT, Berge G, Sveinbjornsson B, et al. Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res, 2002, 22: 2703-2710.
[45] Bateman A, Singh A, Jothy S, et al. The levels and biologic action of the human neutrophil granule peptide HP-1 in lung tumors. Peptides, 1992, 13:133-139.
[46] Mizukawa N, Sugiyama K, Kamio M, et al. Immunohistochemical staining of human alpha-defensin-1 (HNP-1), in the submandibular glands of patients with oral carcinomas. Anticancer Res, 2000, 20:1125-1127.
[47] Muller C A, Markovic-Lipkovski J, Klatt T, et al. Human alpha-defensins HNPs-1,-2, and-3 in renal cell carcinoma influences on tumor cell proliferation. Am J Pathol, 2002, 160:1311-1324.
[48] Holterman D A, Diaz J I, Blackmore P F, et al. Overexpression of alpha-defensin is associated with bladder cancer invasiveness. Urol Oncol, 2006, 24:97-108.
[49] Hancock R E W, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol, 2000, 8:402-410.
[50] Ganz T, Metcalf J A, Gallin J I, et al. Microbicidal/ cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and 'specific’ granule deficiency. J Clin Invest, 1988, 82:552-556.
[51] Putsep K, Carlsson G, Boman H G, et al. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet, 2002, 360:1144-1149.
[52] Ong P Y, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med, 2002, 347:1151-1160.
[53] Nomura I, Goleva E, Howell M D, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol, 2003, 171:3262-3269.
[54] Moser C, Weiner D J, Lysenko E, et al. β-Defensin 1 contributes to pulmonary innate immunity in mice. Infect Immun 2002, 70:3068-3072.
[55] Rosenberger C M, Gallo R L, Finlay B B. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci USA, 2004, 101:2422-2427.
[56] Iimura M, Gallo R L, Hase K, et al. Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol, 2005, 174:4901-4907.
[57] Nizet V, Ohtake T, Lauth X, et al, Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature, 2001, 414:454-457.
[58] Salzman N H, Ghosh D, Huttner K M, et al. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature, 2003, 422:522-526.
[1] Ying CHEN,Hai-peng XIAO,Xiao-yan ZHANG,Qing-wei GONG,Li MA,Wen-jia LI,Xiao-feng CHEN. Expression and Characterization of Recombinant GLP-1-IgG4-Fc Fusion Protein[J]. China Biotechnology, 2018, 38(7): 58-66.
[2] WANG Dong-dong, ZHANG Guo-li, YUE Yu-huan, WU Guang-mou, TIAN Yuan, LIU Yu-ling, JI Yuan-gang, WANG Jing-peng, LI Jian, PAN Rong-rong, MA Hong-yuan. Construction, Expression and Preliminary Study on Activity of Human Bivalent Single Chain Antibody Against the Alpha-toxin of Clostridium perfringens Type A[J]. China Biotechnology, 2017, 37(4): 18-25.
[3] LIU Xiao-ming, JIANG Ning, ZHANG Ai-zhong, CAI Peng. Expression of Hybrid Antimicrobial Peptides in Pichia Yeast and Identification of Its Biological Activity[J]. China Biotechnology, 2016, 36(2): 81-89.
[4] GAO Xiang-lei, LIN Shu-shan, GONG Qing-wei, PAN Lan, MA Li, FENG Yan, LIN Xiao-que, ZENG Jian, LI Wen-jia, CHEN Xiao-feng, CHEN Ying. Purification and Characterization of Recombinant Human Glucagon-like Peptide-1 Analogue[J]. China Biotechnology, 2016, 36(12): 15-20.
[5] TONG Liang-qin, QU Ya-jun, CHEN Min. Research Advance on Exopolysaccharides Synthesized by Lactic Acid Bacteria[J]. China Biotechnology, 2015, 35(11): 85-91.
[6] LI Cui-lin, ZHANG Fan, CHEN Dan-yang, WANG Hao, GUO Qiang, DU Jun. Study of Prokaryotic Expression and Biological Activity of Homo sapiens Kras Protein[J]. China Biotechnology, 2014, 34(8): 1-6.
[7] SUN Shao-fei, WANG Bei-lei, YUAN Ting, ZHANG Bing, GUO Gang, ZHANG Ru. Expression and Fusion Protein TAT-NLS-Nkx6.2 in E.coli and Its Purification and Biological Analysis[J]. China Biotechnology, 2013, 33(9): 24-30.
[8] HUANG Zhen-rong, ZHANG San-jun, QIAN Min, REN Hua. Expression, Purification and Biological Activity of Escherichia coli RecQ Helicase[J]. China Biotechnology, 2013, 33(3): 21-27.
[9] SONG Lin-tao, JIANG Chao, LI Xiao-kun. The Development of the Study on Fibroblast Growth Factor 18[J]. China Biotechnology, 2012, 32(09): 95-100.
[10] GUO Yun-ping, SUN Lu, ZHANG Li-jian, WANG Zeng-lu, GAO Chao, YANG Qiang, LIU Yi, ZHANG Ying-qi, QU Yan, TAO Ling. Expression, Purification and Characterization of Non-taged Recombinant Human Thioredoxin[J]. China Biotechnology, 2012, 32(08): 62-67.
[11] NI Bei-bei, FAN Zhen-zhen, CHEN Hong, HUANG Bing-ren. Fusion Protein Identification as Polymer and Its Analysis of Structure[J]. China Biotechnology, 2012, 32(07): 1-7.
[12] LI Juan, YU Rong-jie, WANG Jing-jing, HUANG Lin, LIU Xiao-fei. Biological Effects of Recombinant PAC1-EC1(N) on the Viability of Cell Lines with Different PAC1 Isoforms[J]. China Biotechnology, 2011, 31(06): 22-28.
[13] MIAO Liang, XU Li-hua, JI Xu, BIAN Liu-jiao. Cloning, Expression, Purification and its Biological Activity Study of the Soluble Tripolymer Recombinant Angiogenesis Inhibitor Kringle 5[J]. China Biotechnology, 2011, 31(03): 18-22.
[14] WANG Xiao-xi, LI Juan, LAO Xun, ZHANG Hong-dan, HUANG Jing, WU Zi-rong. Cloning, Expression and Biological Activity Study of Human Peptide Tyrosine Tyrosine and Its Derivative[J]. China Biotechnology, 2011, 31(02): 7-11.
[15] WANG Yi, TIAN Hai-shan, LI Xiao-kun. The Development of Fibroblast Growth Factor 8[J]. China Biotechnology, 2011, 31(01): 75-80.