Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (6): 99-104    DOI:
    
Research Progress of Genome Editing in Plants
XIE Ke1,2, RAO Li-qun3, LI Hong-wei1,2, AN Xue-li1,2, FANG Cai-chen1,2,4, WAN Xiang-yuan1,2,3,4
1. State Key Laboratory of Main Crop Germplasm Innovation, Beijing 100192, China;
2. Beijing Golden Guanfeng Bio-tech Co., LTD, Beijing 100192, China;
3. Hunan Agricultural University, College of Bioscience and Biotechnology, Changsha 410128, China;
4. Shandong Guanfeng Seed Science and Technology Co., LTD, Guanxian 252500, China
Download: HTML   PDF(579KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The precise insertion of a foreign DNA molecule at genome through homologous recombination remains low efficiency in plants. Genome editing is an important tool to precisely integrate DNA molecules at a defined genomic location. Extensive efforts have been made to understand the mechanisms governing gene targeting and to establish efficient systems to achieve precise and efficient targeting. A set of genome editing techniques, engineered meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, have recently emerged that enable targeted editing of genomes in plants. The recent development of genome editing technique based on the CRISPR/Cas system demonstrate that it is efficient and specific for wide application. The rapid progress in the field of genome editing was summarized, and then the potential perspective of the genome editing technology to be used in agriculture and plant engineering was discussed.



Key wordsPlant genome engineering      Genome editing      Homologous recombination      Engineered nuclease     
Received: 02 May 2013      Published: 25 June 2013
ZTFLH:  Q819  
Cite this article:

XIE Ke, RAO Li-qun, LI Hong-wei, AN Xue-li, FANG Cai-chen, WAN Xiang-yuan. Research Progress of Genome Editing in Plants. China Biotechnology, 2013, 33(6): 99-104.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I6/99

[1] Thomas K R, Capecchi M R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987, 51: 503-512.
[2] Doetschman T, Gregg R G, Maeda N, et al. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature, 1987, 330: 576-578.
[3] Lloyd A, Plaisier C L, Carroll D, et al. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci U S A, 2005, 102: 2232-2237.
[4] Gherbi H, Gallego M E, Jalut N, et al. Homologous recombination in planta is stimulated in the absence of Rad50. EMBO Rep, 2001, 2: 287-291.
[5] Fritsch O, Benvenuto G, Bowler C, et al. The INO80 protein controls homologous recombination in Arabidopsis thaliana. Mol Cell, 2004, 16: 479-485.
[6] Shaked H, Melamed-Bessudo C, Levy A A. High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci U S A, 2005, 102: 12265-12269.
[7] Puchta H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot, 2005, 56: 1-14.
[8] Mansour S L, Thomas K R, Capecchi M R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature, 1988, 336: 348-352.
[9] Puchta H, Dujon B, Hohn B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A, 1996, 93: 5055-5060.
[10] Tzfira T, Frankman L R, Vaidya M, et al. Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol, 2003, 133: 1011-1023.
[11] Gao H, Smith J, Yang M, et al. Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J, 2010, 61: 176-187.
[12] Bibikova M, Carroll D, Segal D J, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol, 2001, 21: 289-297.
[13] Shukla V K, Doyon Y, Miller J C, et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 2009, 459: 437-441.
[14] Townsend J A, Wright D A, Winfrey R J, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature, 2009, 459: 442-445.
[15] Morbitzer R, Romer P, Boch J, et al. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A, 2010, 107: 21617-21622.
[16] Cermak T, Doyle E L, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res, 2011, 39: e82.
[17] Li T, Liu B, Spalding M H, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol, 2012, 30: 390-392.
[18] Zhang Y, Zhang F, Li X, et al. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol, 2013, 161: 20-27.
[19] Baker M. Gene-editing nucleases. Nat Methods, 2012, 9: 23-26.
[20] Alberts B. The breakthroughs of 2012. Science, 2012, 338: 1511.
[21] Jansen R, Embden J D, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002, 43: 1565-1575.
[22] Godde J S, Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. Journal of Molecular Evolution, 2006, 62: 718-729.
[23] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, 8: 172.
[24] Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet, 2011, 45: 273-297.
[25] Terns M P, Terns R M. CRISPR-based adaptive immune systems. Curr Opin Microbiol, 2011, 14: 321-327.
[26] Sapranauskas R, Gasiunas G, Fremaux C, et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 2011, 39: 9275-9282.
[27] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337: 816-821.
[28] Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471: 602-607.
[29] Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A, 2012, 109:2579-2586.
[30] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339: 819-823.
[31] Mali P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339: 823-826.
[32] Jinek M, East A, Cheng A, et al. RNA-programmed genome editing in human cells. eLife, 2013, 2: e00471.
[33] Chang N, Sun C, Gao L, et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res, 2013, 23: 465-472.
[34] Hwang W Y, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 2013, 31: 227-229.
[35] Dicarlo J E, Norville J E, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 2013, 41: 4336-4343.

[1] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[2] FAN Bin,CHEN Huan,SONG Wan-ying,CHEN Guang,WANG Gang. Advances in Lactic Acid Bacteria Gene Modification[J]. China Biotechnology, 2020, 40(6): 84-92.
[3] WANG Gang,XIAO Yu,LI Yi,LIU Zhi-gang,PEI Cheng-li,WU Li-da,LI Yan-li,WANG Xi-qing,ZHANG Ming-lei,CHEN Guang,TONG Yi. Effect of ldhL Gene Knock out Mutant on Lactobacillus delbrueckii subsp. blgaricus Producing L-lactic Acid[J]. China Biotechnology, 2019, 39(8): 66-73.
[4] ZHAN Chun-jun, LI Xiang, LIU Guo-qiang, LIU Xiu-xia, YANG Yan-kun, BAI Zhong-hu. Identification of Glycerol Transporter in Pichia pastoris and Function Research[J]. China Biotechnology, 2017, 37(7): 48-55.
[5] LI Xiao-fei, CAO Ying-xiu, SONG Hao. CRISPR/Cas9 System:A Recent Progress[J]. China Biotechnology, 2017, 37(10): 86-92.
[6] CHEN Jian-wu, REN Hong-yan, HUA Wen-jun, LIU Xi-mei, QI Shi-jin, ZHOU Li, OU Yang-yan, BI Yan-zhen, YANG Ye, ZHENG Xin-min. A Double Fluorescence Screening Strategy to Enhance the Efficiency of Gene Targeting[J]. China Biotechnology, 2017, 37(1): 58-63.
[7] LIU Rui-qi, WANG Wei-wei, WU Yong-yan, ZHAO Qiu-yun, WANG Yong-sheng, QING Su-zhu. Research Progress of CRISPR-Cas9 and Its Application in Gene Therapy[J]. China Biotechnology, 2016, 36(10): 72-78.
[8] ZHU Shao-yi, GUAN Li-hong, LIN Jun-tang. CRISPR-Cas9 System and Its Applications in Disease Models[J]. China Biotechnology, 2016, 36(10): 79-85.
[9] LI Jia-xin, FENG Wei, WANG Zhi-gang, WANG Yan-feng. CRISPR/Cas9 System and Its Applications in Transgenic Animals[J]. China Biotechnology, 2015, 35(6): 109-115.
[10] PU Qiang, LUO Jia, SHEN Lin-yuan, LI Qiang, ZHANG Yi, ZHANG Shun-hua, ZHU Li. The Advance and Application of CRISPR/Cas9 Mediated Genome Editing Technique[J]. China Biotechnology, 2015, 35(11): 77-84.
[11] ZHANG Qiao-Juan, ZHANG Yan-Qiong, LIU Chang-Bai. TALEN:A New Genome Site-specific Editing Technology[J]. China Biotechnology, 2014, 34(7): 76-80.
[12] GE Gao-shun, ZHANG Li-chao, ZHAO Xin, HU Xue-jun, LI Ya-jie. Optimization of the Method for Scarless Gene Knockout in Escherichia coli Genome[J]. China Biotechnology, 2014, 34(06): 68-74.
[13] LIU Si-ye, XIA Hai-bin. A New Targeted Gene Editing Technology Mediated by CRISPR-Cas System[J]. China Biotechnology, 2013, 33(10): 117-123.
[14] SONG Yun, QIAO Yong-gang, LI Gui-quan. Zinc Finger Nucleases and Targeted Genome Engineering in Plants[J]. China Biotechnology, 2013, 33(1): 109-113.
[15] FAN Xiang-yu, XIE Jian-ping. Recombineering Based on Mycobacteriophage and Its Application[J]. China Biotechnology, 2012, 32(09): 101-106.