Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (6): 74-78    DOI:
    
Recombinant hPTH(1-34)ab-HSA Fusion Protein Expressed Steadily and Integrally in Saccharomyces cerevisiae
LIU Qing-xia1, ZHUGE bin1, FANG Hui-ying1, ZONG Hong1, JIN Jian2, ZHUGE Jian1
1. The Key Laboratory of Industrial Biotechnology, Ministry of Education. Research Center of Industrial Microorganisms, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
2. School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(691KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Saccharomyces cerevisiae was used as host to express recombinant human parathyroid hormone (PTH)(1-34)ab-human serum albumin (HSA) fusion protein steadily and completely. A genomic DNA fragment, encoding a fusion protein hPTH(1-34)ab-HSA, was fused to α-factor signal peptide gene by PCR, and a recombinant plasmid pYX-α-hPTH(1-34)ab-HSA was constructed. The recombinant plasmid was introduced in S. cerevisiae strain W303 to produce fusion protein. The results of Western blot and N-terminal amino acid sequencing indicated that the fusion protein hPTH(1-34)ab-HSA was expressed steadily and integrally in S.cerevisiae W303-1A. To solve the incompleteness and instability of hPTH(1-34)ab-HSA fusion protein expressed in Pichia pastoris.



Key wordshPTH(1-34)ab-HSA      Saccharomyces cerevisiae      Stability      Integrity     
Received: 18 January 2013      Published: 25 June 2013
ZTFLH:  Q786  
Cite this article:

LIU Qing-xia, ZHUGE bin, FANG Hui-ying, ZONG Hong, JIN Jian, ZHUGE Jian. Recombinant hPTH(1-34)ab-HSA Fusion Protein Expressed Steadily and Integrally in Saccharomyces cerevisiae. China Biotechnology, 2013, 33(6): 74-78.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I6/74

[1] Keutmann H T, Sauer M M, Hendy G, et al. Complete amino acid sequence of human parathyroid hormone. Biochemistry, 1978, 17: 5723.
[2] Uzawa T, Hori M, Ejiri S, et al. Comparison of the effects of intermittent and continuous administration of human parathyroid hormone(1-34) on rat bone. Bone, 1995, 16: 477-484.
[3] Hock J M, Gera I. Effects of continuous and intermittent administration and inhibition of resorption on the anabolic response of bone to parathyroid hormone. Bone Miner Res, 1992, 7: 65-72.
[4] Jazayeri J A, Carroll G J. Fc-based cytokines: Prospects for engineering superior therapeutics. BioDrugs, 2008, 22: 11-26.
[5] Manning M C, Patel K, Borchardt R T. Stability of protein pharmaceuticals. Pharm Res, 1989, 6: 903-918.
[6] Muller N, Schneider B, Pfizenmajer K, et al. Superior serum half life of albumin tagged TNF ligands. Biochem Biophys Res Commun, 2010, 396: 793-799.
[7] Syed S, Schuyler P D, Kulczycky M, et al. Potent antithrombin activity and delayed clearance from the circulation characterize recombinant hirudin genetically fused to albumin. Blood, 1997, 89: 3243-3252.
[8] Anraku M, Tsurusaki Y, Watanabe H, et al. Stabilizing mechanisms in commercial albumin preparations: Octanoate and N-acetyl-L-tryptophanate protect human serum albumin against heat and oxidative stress. Biochim Biophys Acta, 2004, 1702: 9-17.
[9] Kragh-Hansen U, Watanabe H, Nakajou K, et al. Chain length-dependent binding of fatty acid anions to human serum albumin studied by site-directed mutagenesis. Mol Biol, 2006, 363: 702-712.
[10] Yu Z, Fu Y. Recombinant human albumin fusion proteins with long lasting biological effects. US, US7244833, 2007.
[11] Kjeldsen T, Brandt J, Andersen A S, et al. A removable spacer peptide in an α-factor-leader/insulin precursor fusion protein improves processing and concomitant yield of the insulin precursor in Saccharomyces cerevisiae. Gene, 1996, 170: 107-112.
[12] Crabe T, Walton E F. The secretion of active recombinant human gastric lipase by Saccharomyces cerevisiae. Protein Expr Purif, 1996, 7: 229-236.
[13] Miklos Kálmán, Imre Cserpán, György Bajszár. Synthesis of a gene for human serum albumin and its expression in Saccharomyces cerevisiae. Nucleic Acids Research, 1990, 18: 6075-6081.
[14] 张伟,余传信,杨建良,等. 酿酒酵母表达Sj23HD-HSA融合蛋白与免疫反应性分析. 中国血吸虫病防治杂志,2011, 23(6): 653-658. Zhang W, Yu C X, Yang J L, et al. Expression and characterization of recombinant Sj23HD-HSA fusion protein in Saccharomyces cerevisiae. Chin J Schisto Control, 2011,23(6):653-658.
[15] Gietz R D, Schiestl R H. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Transformation of Yeast Cells, 1995, 11:355-360.

[1] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[2] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[3] MING Yue,ZHAO Zi-tong,WANG Hong-lei,LIANG Zhi-hong. Modification Strategy of Enzyme Thermal Stability Based on Sequence and Structure Analysis[J]. China Biotechnology, 2021, 41(10): 100-108.
[4] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[5] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[6] LIN Jian-hua,HAN Jun,Xu Han-mei. Developing the Stability of PD-1 / PD-L1 Immune Checkpoint Antibody Drug Formulation[J]. China Biotechnology, 2020, 40(10): 35-42.
[7] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[8] Pan-pan ZHANG,Yan-ji XU,Zhi-ke WANG,Xiao LIU,Su-xia LI. High-level Expression and Characterization of Recombinant Porcine Trypsin and Its R122 Site Mutant in Pichia pastoris[J]. China Biotechnology, 2018, 38(5): 56-65.
[9] GAO Hong-tao, GUO Xiao-wei, SUN Dan, XIE Chang-rui, WANG Fa-wei, LI Hai-yan. Extraction of Camelina Seed Oil Body and Analysis of Stability[J]. China Biotechnology, 2017, 37(9): 98-104.
[10] LIU Yan-juan, LI Xu-juan, YUAN Hang, LIU Xian, GAO Yan-xiu, GONG Ming, ZOU Zhu-rong. Fusing the Acyl Carrier Protein Enhances the Solubility and Thermostability of the Recombinant Proteins in Escherichia coli[J]. China Biotechnology, 2017, 37(7): 115-123.
[11] CHENG Ke-li, LIU Xiao, LI Su-xia. Study on High-level Expression and Characterization of a V125T V8 Protease Mutant with Tolerance to SDS[J]. China Biotechnology, 2017, 37(4): 56-67.
[12] MEI Xue-ang, CHEN Yan, WANG Rui-zhao, XIAO Wen-hai, WANG Ying, LI Xia, YUAN Ying-jin. Engineered Yeast Cell for Producing Zeaxanthin[J]. China Biotechnology, 2016, 36(8): 64-72.
[13] GUO Chao, WANG Zhi-yan, GAN Yi-ru, LI Dan, DENG Yong, YU Hao-ran, HUANG He. Engineering Thermostability of Bovine Enterokinase by Rational Design Method[J]. China Biotechnology, 2016, 36(8): 46-54.
[14] YU Xiao-dan, WU Xiu-xiu, YAO Dong-sheng, LIU Da-ling, XIE Chun-fang. Trypsin-resistant Improvement of Bacillus subtilis β-1,4-endoxylanase by Rational Design Based on Molecular Structure Evaluation[J]. China Biotechnology, 2016, 36(8): 80-88.
[15] WANG Rui-zhao, PAN Cai-hui, WANG Ying, XIAO Wen-hai, YUAN Ying-jin. Design and Construction of highβ-carotene Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(7): 83-91.