Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (6): 24-29    DOI:
    
Isolation of Cassava ftsZ Plastid Division Family Genes and Preliminary Identification Their Functions in E. coli
GENG Men-tin1,2, YAO Yuan1,2, HU Xin-wen1, GUO Jian-chun2, MIN Yi1,2
1. College of Agriculture, Hainan University, Haikou 570228, China;
2. Institute of Biotechnology and Bioscience, CATAS, Haikou 571101, China
Download: HTML   PDF(920KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The ftsZ genes are a set of key genes in cell division regulation, and their proteins form a ring structure at the division site to control the process of cell division. In order to study the relationship between cassava starch formation and amyloplast division, three cassava ftsZ family genes were isolated and named as ftsZ1-3. To identify their functions, the ftsZ1-3 genes respectively fused with GFP were expressed in E. coli BL21(DE3). The result showed that the expression of cassava ftsZ genes actively affect the E. coli division although the genetic relationship between cassava and E. coli is far, and the homology of their ftsZ genes is low. This result will be a foundation for further study the function of cassava ftsZ family genes.



Key wordsCassava      ftsZ gene family      The expression of E. coli      Cell division     
Received: 10 October 2012      Published: 25 June 2013
ZTFLH:  Q781  
Cite this article:

GENG Men-tin, YAO Yuan, HU Xin-wen, GUO Jian-chun, MIN Yi. Isolation of Cassava ftsZ Plastid Division Family Genes and Preliminary Identification Their Functions in E. coli. China Biotechnology, 2013, 33(6): 24-29.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I6/24

[1] Hirota Y. Thermo sensitive mutants of E. coli affected in the process of DNA synthesis and cell division. Cold Spring Harbor Symp, Quant Biol, 1968, 33: 677.
[2] Lutkenhaus J, Wolf-Watz H, Donachie W D. Organization of genes in the ftsA-envA region of the E. coli genetic map and identification of a new fts locus (ftsZ). J Bacteriol, 1980, 142(2): 615-620.
[3] Bi E, Lutkenhaus J. FtsZ ring structure associated with division in E. coli. Nature, 1991, 354(6349): 161-164.
[4] Addinall S G, Bi E, Lutkenhaus J. FtsZ ring formation in fts mutants. J Bacteriol, 1996, 178(13): 3877-3884.
[5] 胡勇, 孔冬冬. 衣藻叶绿体分裂相关基因CrFtsZ3的克隆及其原核表达. 生物化学与生物物理学报, 2003, 35(11): 998-1004. Hu Y, Kong D D. Cloning and expression of Chlamydomonas reinhardtii chloroplast division gene CrFtsZ3. Acta Biochimica et Biophysica Sinica, 2003, 35(11): 998-1004.
[6] Erickson H P. FtsZ, a tubulin homologue in prokaryote cell division. Trends Cell Biol, 1997, 7: 362-367.
[7] Lutkenhaus J, Addinall S G. Bacterial cell division and the Z ring. Ann Rev Biochem, 1997, 66: 93-116.
[8] Erin D G, Natalie A D. Imaging-based identification of a critical regulator of FtsZ protofilament curvature in Caulobacter. Molecular Cell, 2010, 39: 975-987.
[9] Reski R. Rings and networks: the amazing complexity of FtsZ in chloroplasts. Trends Plant Sci, 2002, 7(3): 103-105.
[10] Osteryoung K W, Stoles K D, Rutherforo S M, et al. Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ. Plant Cell, 1998, 10:1991-2004.
[11] Wang D, Kong D D, Hu Y, et al. Effects of tobacco plastid division genes NtFtsZ1-1 and NtFtsZ1-2 on the division and morphology of chloroplasts. Acta Botan Sin, 2002, 44(7): 838-844.
[12] He Y K, Zhu C F, Wang D, et al. Cloning of plastid division gene GIFtsZ from Gentiana lutea and its expression during petal development. Prog Nat Sci, 2002, 12(8): 592-597.
[13] Strepp R, Scholz S, Kruse S, et al. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci, 1998, 95:4368-4373.
[14] 王彩华, 雷启义, 胡勇. 衣藻叶绿体分裂基因CrFtsZ1在E. coli中的表达. 西北植物学报, 2004, 24(5): 803-807. Wang C H, Lei Q Y, Hu Y. Expression of Chlamydomonas reinhardtii chloroplast division gene CrFtsZ1 in E. coli. Acta Botan Sin, 2004, 24(5): 803-807.
[15] Louis G, Justine K, Bettina H, et al. Filamentous temperature-sensitive Z (FtsZ) isoforms specifically interact in the chloroplasts and in the cytosol of Physcomitrella patens. New Phytolog, 2007, 176: 299-310.
[16] 胡勇,雷启义,孔冬冬等. 衣藻CrFtsZ2-GFP融合蛋白在E.coli中的表达及其定位. 水生生物学报, 2004, 28(5): 484- 489. Hu Y, Lei Q Y, Kong D D, et al. Expression and location of CrFtsZ2 gene from chlamydomonas reinhardtii in E. coli. Acta Hydribio Sin, 2004, 28(5): 484- 489.
[17] Stanislav V, Aaron G S, Carol B J, et al. Oligomerization of plant FtsZ1 and FtsZ2 plastid division proteins. Archi Biochem and Biophy, 2011, 513: 94-101.
[18] Ekkehard N, Richard W. Solute pores, ion channels, and metabolite transporters in the outer and inner envelope membranes of higher plant plastids. Biochim Biophy Acta(BBA)-Biomembranes, 2000, 1465: 307-323.
[19] Stokes K D, Mcandrew R S, Vitha S, et al. Chloroplast division and morphology are differentially by overexpression of FtsZ1and FtsZ2 genes in Arabidopsis. Plant Physiol, 2000, 124: 1668-1677.
[20] Ma X,Ehrhardt D W,Margolin W. Colocalizationof cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci, 1996, 93: 12998-13003.
[21] Kuroiwa T, Kuroiwa H, Sakai A, et al. The division apparatus of plastids and mitochondria. Int Rev Cytol, 1998, 181: 1-41.
[22] Kuroiwa T. The discovery of the division apparatus of plastids and mitochondria. J Electron Microsc, 2000, 49 (1): 123-128.
[23] 王东, 孔冬冬, 胡勇, 等. 烟草质体分裂相关基因NtFtsZ的克隆及功能分析, 自然科学进展, 2002, 12(10):1042-1047. Wang D, Kong D D, Hu Y, et al. Cloning and function analysis of tobacco plastid division gene NtFtsZ. Prog Natl Sci, 2002, 12(10):1042-1047.
[24] Ward Jr J E, Lutkenhaus J. Overproduction of FtsZ induces minicell formation in E. coli. Cell, 1985,42(3):941-949.

[1] AI Zuo-zuo, YAN Ri-ming, YUAN Jin-yun, ZHANG Zhi-bin, ZHU Du. Optimization of Single Cell Oil Produced from Cassava Starch by Response Surface Methodology[J]. China Biotechnology, 2012, 32(07): 66-72.
[2] ZHENG Jun-ping, LI Zhi-gang, LI Xin, LI Le, SHI Zhong-ping. Yeast Extract Stimulates the Phase-shift in Cassava Based Bio-butanol Production[J]. China Biotechnology, 2011, 31(12): 72-78.
[3] . Somatic Embryogenesis and Plant Regeneration of Cassava(Manihot esculenta Crantz)[J]. China Biotechnology, 2008, 28(12): 52-56.