Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (6): 105-110    DOI:
    
Advances in Research on Ethanol Tolerance of Saccharomyces cerevisiae
LIU Shi-xue1, WANG Qiao-ping1,2, TANG Li-wei1, YAN Jin-ping1, Chagan Irbsi1
1. Laboratory of Bioconvertion, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
2. Qujing Center for Animal Disease Control and Prevention, Qujing 655000, China
Download: HTML   PDF(392KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bioethanol as a renewable clean energy is causing widespread concern. Saccharomyces cerevisiae is the most commonly strains in the production of ethanol, but ethanol tolerance often become the most important factors that limit the Saccharomyces cerevisiae ethanol production.Improvement of ethanol tolerance of yeast cells is beneficial for ethanol production. However, traditional breeding methods have many shortcomings, such as long breeding cycle, variable mutation direction and so on. Recent research results about S. cerevisiae molecular mechanisms of tolerance to ethanol were reviewed, and the genetic engineering, metabolic engineering to improve S. cerevisiae ethanol tolerance was summarized.



Key wordsSaccharomyces cerevisiae      Ethanol tolerance      Genetic engineering     
Received: 06 March 2013      Published: 25 June 2013
ZTFLH:  Q819  
Cite this article:

LIU Shi-xue, WANG Qiao-ping, TANG Li-wei, YAN Jin-ping, Chagan Irbsi. Advances in Research on Ethanol Tolerance of Saccharomyces cerevisiae. China Biotechnology, 2013, 33(6): 105-110.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I6/105

[1] Teixeira M C, Raposo L R, Mira N P, et al. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol, 2009, 75(18):5761-5772.
[2] Ding J, Huang X, Zhao N, et al. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2009, 85(2):253- 263.
[3] Costa V, Reis E, Quintanilha A, et al. Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase. Arch Biochem Biophys, 1993, 300(2):608-614.
[4] Du X, Takagi H. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.Appl Microbiol Biotechnol, 2007, 75(6):1343-1351.
[5] Aguilera F, Peinado R A, Millán C,et al. Relationship between ethanol tolerance, H-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol, 2006, 110(1):34-42.
[6] Chi Z, Arneborg N. Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. J Appl Microbiol, 1999, 86(6):1047-1052.
[7] You K M, Rosenfield C L, Knipple D C. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol, 2003, 69(3):1499-1503.
[8] Monteiro G A, Sá-Correia I. In vivo activation of yeast plasma membrane H-ATPase by ethanol: effect on the kinetic parameters and involvement of the carboxyl-terminus regulatory domain. Biochim Biophys Acta, 1998, 1370(2):310-316.
[9] Salgueiro S P, Sá-Correia I, Novais J M. Ethanol-induced leakage in Saccharomyces cerevisiae: kinetics and relationship to yeast etha-nol tolerance and alcohol fermentation productivity. Appl Environ Microbiol, 1998, 54(4):903-909.
[10] Yang K M, Lee N R, Woo J M, et al. Ethanol reduces mitochondrial membrane integrity and thereby impacts carbon metabolism of Saccharomyces cerevisiae. FEMS Yeast Res, 2012, 12(6):675-684.
[11] 彭源德,朱作华,唐守伟,等. 耐高温、高浓度酒精酵母的选育与耐受性能初步鉴定.中国亚麻科学,2010,32(3):0135-0141. Peng D Y, Zhu Z H, Tang S W. et al. Breeding and preliminary identification of thermotolerant and ethanol endurant yeast strains. Plant Fiber Sciences in China, 2010,32(3):0135-0141.
[12] 陆筑凤, 李超,王昌禄,等. Genome shuffling技术选育高耐性酿酒酵母. 酿酒科技, 2008, 7:0023-0026. Lu Z F, Li C, Wang C L, et al. Breeding of Saccharomyces cerevisiae with high temperature and ethanol tolerance by genome shuffling techniques. Liquor-marking Science and Technology, 2008, 7:0023-0026.
[13] Tao X, Zheng D, Liu T, et al. A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. PLoS One, 2012, 7(2):e31235.
[14] Winzeler E A, Shoemaker D D, Astromoff A, et al. Functional characterization of the S.cervisiae genome by gene deletion and parallel analysis. Science,1999, 285(5429):901-907.
[15] 张秋美, 赵心清, 姜如娇, 等. 酿酒酵母乙醇耐性的分子机制及基因工程改造. 生物工程学报, 2009, 25(4):481-487. Zhang Q M, Zhao X Q, Jiang R J,et al. Ethanol tolerance in yeast: molecular mechanisms and genetic engineering. Chinese Journal of Biotechnology,2009, 25(4): 481-487.
[16] Ogawa Y, Nitta A, Uchiyama H, et al. Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng,2000, 90(3):313-333.
[17] Kaino T, Takagi H. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Microbiol Biotechnol, 2008, 79(2):273-283.
[18] An M Z, Tang Y Q, Mitsumasu K, et al. Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase. Biotechnol Lett, 2011, 33(7):1367-1374.
[19] Li Q, Zhao X Q, Chang A K, et al. Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab Eng, 2012, 14(1):1-8.
[20] Alexandre H, Ansanay G V, Dequin S, et al. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett, 2001, 498(1):98-103.
[21] Moon M H, Ryu J, Choeng Y H, et al. Enhancement of stress tolerance and ethanol production in Saccharomyces cerevisiae by heterologous expression of a trehalose biosynthetic gene from Streptomyces albus. Biotechnology and Bioprocess Engineering, 2012,17(9): 986-996.
[22] Ogawa Y, Nitta A, Uchiyama H, et al. Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng,2000, 90(3):313-320.
[23] Vanegas J M, Contreras M F, Faller R, et al. Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys J, 2012, 102(3):507-516.
[24] Kubota S, Takeo I, Kume K, et al. Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem, 2004, 68(4):968-972.
[25] Ma M, Liu Z L. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2010, 87(3):829- 845.
[26] 张穗生, 黄日波, 周兴, 等. 酿酒酵母乙醇耐受性机理研究进展. 微生物学报,2009, 36(10):1604-1608. Zhang H S, Huang R B, Zhou X, et al. Advances in research on the mechanisms of Saccharomyces cerevisiae ethanol tolerance.Microbiology, 2009, 36(10):1604-1608.
[27] Shin G H, Veen M, Stahl U, et al. Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. Yeast, 2012, 29(9):371-383.
[28] Dinh T N, Nagahisa K, Hirasawa T, et al. Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. Plos One, 2008, 3 (7): e2623.
[29] Kajiwara S, Suga K, Sone H, et a1. Improved ethanol tolerance of Saccharomy cescerevisiae strains by increases in fattyacid unsaturation via metabolic engineering. Biotechnol Lett, 2000, 22(1):1839- 1843.
[30] Martin C E, Oh C S, Jiang Y. Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim Biophys Acta, 2007, 1771(13):271-285.
[31] Sanchez O J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol, 2008, 99(13):5270-5295.
[32] Samuel D, Kumar T K, Ganesh G, et al. Proline inhibits aggregation during protein refolding. Protein Sci, 2000, 9(2):344- 352.
[33] Takagi H, Takaoka M, Kawaguchi A,et al. Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol,2005, 71(12):8656-8662.
[34] Yoshikawa K, Tanaka T, Furusawa C,et al. Comprehensive phenotypic analys is for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res, 2009, 9(1):32-44.
[35] Hirasawa T, Yoshikawa K, Nakakura Y, et al. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol, 2007, 131(1):34-44.
[36] Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol, 2007, 8(11): 917-929.
[37] Kim H, Kim A, Cunningham K W.Vacuolar H+-ATPase (V-ATPase) promotes vacuolar membrane permeabilization and nonapoptotic death in stressed yeast. J Biol Chem, 2012, 287(23):19029-19039.
[38] Kane P M. The long physiological reach of the yeast vacuolar H+-ATPase, J Bioenerg Biomembr, 2007, 39(5): 415-421.
[39] Martínez-Muñoz G A, Kane P. Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem, 2008, 283(29):20309-20319.
[40] Benlekbir S, Bueler S A, Rubinstein J L. Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11-Å resolution. Nat Struct Mol Biol, 2012, 19(12):1356-1362.
[41] Ishimoto M, Sugimoto N, Sekito T, et al. ATP-dependent export of neutral amino acids by vacuolar membrane vesicles of Saccharomyces cerevisiae. Biosci Biotechnol Biochem, 2012, 76(9):1802-1806.
[42] Auesukaree C, Damnernsawad A, Kruatrachue M, et al. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet, 2009, 50(3),301-310.
[43] Teixeira M C, Mira N P, Sá-Correia I. A genome-wide perspective on the response and tolerance to food-relevant stresses in Saccharomyces cerevisiae.Curr Opin Biotechnol, 2011, 22(2):150-156.
[44] Madeira A, Leitao L, Soveral G,et al. Effect of ethanol on fluxes of water and protons across the plasma membrane of Saccharomyces cerevisiae. FEMS Yeast Res, 2010, 10(3):252-260.
[45] Mira N P, Teixeira M C, Sá-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS, 2010,14 (5):525-540.
[46] Hasegawa S, Ogata T, Tanaka K, et al. Overexpression of vacuolar H+-ATPase-related genes in bottom-fermenting yeast enhances ethanol tolerance and fermentation rates during high-gravity fermentation. J Inst Brew, 2012, 118(1):179-185.
[47] Voorst V F, Houghton L J, Jonson L, et al. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast, 2006, 23(5): 351-359.
[48] Betz C, Schlenstedt G, Bailer S M. Asr1p, a novel yeast ring/PHD finger protein, signals stress to nucleus. J Biochem, 2004, 279 (27): 28174-28181.
[49] Ding J, Huang X, Zhao N, et al. Response of Saccharomyces cerevisiae to ethanol stress involves actions of protein asr1p. J Microbiol Biotechnol, 2010, 20 (12):1630-1636.
[50] Watson K, Cavicchioli R. Acquisition of ethanol tolerance in yeast cells by heat shock. Biotechnology Letters, 1983, 5(6):683-688.
[51] Alper H, Stephanopoulos G. Global transcription machinery engineering: A new approach for improving cellular phenotype. Metab Eng, 2007, 9(2):258-267.
[52] 乔志新, 于群. 全局转录调控及其在代谢工程中的应用. 生物技术通讯, 2009, 20(5):689-691. Qiao Z X, Yu Q. Application of global transcription machinery engineering in metabolic engineering. Letters in Biotechnology, 2009, 20(5):689-691.
[53] 赵心清, 姜如娇, 李宁, 等. SPT3定向进化提高酿酒酵母乙醇耐性的研究.生物工程学报,2010,26(2):159-164. Zhao X Q, Jiang R J, Li N, et al. Directed evolutionof SPT3 to improve ethanol tolerance of Saccharomyces cerevisiae. Chinese Journal of Biotechnology, 2010, 26(2):159-164.

[1] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[2] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[3] Shu-xia MA,Ling ZHANG,Jin-fei YAN,Song YOU. Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.[J]. China Biotechnology, 2018, 38(9): 27-34.
[4] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[5] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[6] GAO Jiao-jiao, YANG Shu-lin. Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology[J]. China Biotechnology, 2017, 37(8): 72-77.
[7] WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus[J]. China Biotechnology, 2017, 37(5): 59-65.
[8] CHEN Jing, KANG Ci-ming, LUO Wen-xin. Advance in Research on Antibody Half-Life Related Engineering[J]. China Biotechnology, 2017, 37(5): 87-96.
[9] GAN Chun-yang, LIU Ya, LUO Ying-ying, ZHANG Wen-lu, HUANG Ai-long, CAI Xue-fei, HU Jie-li. A Cloning Strategy Suitable for DNA Modification by Fragment Scanning[J]. China Biotechnology, 2016, 36(8): 55-63.
[10] MEI Xue-ang, CHEN Yan, WANG Rui-zhao, XIAO Wen-hai, WANG Ying, LI Xia, YUAN Ying-jin. Engineered Yeast Cell for Producing Zeaxanthin[J]. China Biotechnology, 2016, 36(8): 64-72.
[11] WANG Rui-zhao, PAN Cai-hui, WANG Ying, XIAO Wen-hai, YUAN Ying-jin. Design and Construction of highβ-carotene Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(7): 83-91.
[12] ZHANG Wen-qian, XIAO Wen-hai, ZHOU Xiao, WANG Ying. Effect of Post-squalene Genes on the Synthesis of 7-Dehydrocholesterol in the Artificial Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(6): 39-50.
[13] LIU Ting-ting, LIANG Zi-qiang, LIANG Shi-ke, GUO Ji-xing, WANG Fang-hai. Research Advances of Producing Spider Silk by Biotechnology[J]. China Biotechnology, 2016, 36(5): 132-137.
[14] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[15] LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method[J]. China Biotechnology, 2016, 36(12): 86-97.