Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (4): 54-60    DOI:
    
Construction of Co-expression Vector Containing AtCAO and AtHEMA1 Genes from Arabidopsis and Transformation into Tobacco
LI Cui-ping, PAN Yu, BAI Xiao-ning, CHU Fu-tang, SU Cheng-gang, ZHANG Xing-guo
Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Key College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
Download: HTML   PDF(936KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  It is a possible way to improve the low light resistance of crops by increasing the amount of chlorophyll, especially that of chlorophyll b. AtHEMA1 and AtCAO from Arabidopsis thaliana were constructed into the binary expression vector pCAMBIA1302. This two genes were introduced into tobacco via Agrobacterium tumefaciens-mediated transformation. Both the amount of chlorophyll b and the rate of photosynthesis were remarkably increased in the transgenic plant lines TL1 and TL2 compared with the wild type tobacco, while the chlorophyll a/b decreased significantly(P<0.01). The growth of the transgenic tobacco was accelerated compared with the WT under low light. The results had laid a foundation for improving crop low light tolerance with those two genes.

Key wordsTobacco      AtHEMA1 gene      AtCAO gene      Chlorophyll      Low light resistance     
Received: 18 January 2013      Published: 25 April 2013
ZTFLH:  Q786  
Cite this article:

LI Cui-ping, PAN Yu, BAI Xiao-ning, CHU Fu-tang, SU Cheng-gang, ZHANG Xing-guo. Construction of Co-expression Vector Containing AtCAO and AtHEMA1 Genes from Arabidopsis and Transformation into Tobacco. China Biotechnology, 2013, 33(4): 54-60.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I4/54

[1] 陈青君,张福墁,王永健,等.黄瓜对低温弱光反应的生理特征研究.中国农业科学,2003,36(1):77-81. Chen Q J, Zhang F M, Wang Y J, et al. Studies of physiologic characteristics of reaction of cucumber to low temperature and poor light. Scientia Agricultura Sinica, 2003, 36(1): 77-81.
[2] 艾希珍,郭延奎,马兴庄,等.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构.中国农业科学,2004,37(2):268-273. Ai X Z, Guo Y K, Ma X Z, et al. Photosynthetic characteristics and ultrastructure of chloroplast of cucumber under low light intensity in solar green house. Scientia Agricultura Sinica, 2004, 37(2): 268-273.
[3] Barkey K O, Wells R. Response of soybean photosynthesis and chloroplast membrane function to canopy development and mutual shading. Plant Physiology, 1991, 97: 245-252.
[4] Von Wettstein D,Gough S, Kananagara C G.Chlorophyll biosynthesis.Plant Cell, 1995, 7: 1039-1057.
[5] 孙永平,张治平,徐呈祥,等.5-氨基乙酰丙酸处理对低温下西瓜叶片快速叶绿素荧光诱导曲线的影响.园艺学报, 2009,36(5):671-678. Sun Y P, Zhang Z P, Xu C X, et al. Effect of ALA on fast chlorophyll fluorescence induction dynamics of watermelon leaves under chilling stress. Acta Horticulturase Sinica, 2009, 36(5): 671-678.
[6] Tanaka R, Yeshida K, Nakayashiki T, et a1. Differential expression of two hemA mRNAs encoding glutamyl—tRNA reductase proteins in greening cucumber seedlings. Plant Physiology, 1996,110:1223-1230.
[7] 汪良驹,姜卫兵,章镇,等. 5-氨基乙酰丙酸的生物合成及生理活性及其在农业中的潜在应用.植物生理学通讯,2003,39(3):185-192. Wang L J, Jiang W B, Zhang Z, et al.Biosynthesis and physiological activities of 5-aminolevulinic-acid(ALA)and its potential application in agriculture. Plant Physiology, 2003, 39(3): 185-192.
[8] Llang L L,Kumar A M,Soll D. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell, 1994, 6(2): 265-275.
[9] Kumar A M, Csanlankovszki G, Solld D. A second and differentially expressed glutamyl—tRNA reductase gene from Arabidopsis thaliana. Plant Mo1ecular Bio1ogy,1996,30(3): 4l9-426.
[10] Mccormac A C, Fischer A, Kumar A M, et al. Regulation of HEMA1 expression by hytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant Journal, 2001, 25: 549-561.
[11] Eckhardt U, Grimm B, Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants.Plant Mo1 Bio1, 2004, 56: 1-14.
[12] Ulrike Oster, Ryouichi K, Ayumi K, et a1. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J, 2000, 21(3): 305-310.
[13] 李潇,李翠萍,陈吉裕,等.拟南芥AtHEMA1基因的克隆与其表达载体的构建. 南方农业,2011,5(5): 10-14. Li X, Li C P, Chen J Y, et a1. Cloning of AtHEMA1 gene and construction of its plant expression vector, South China Agriculture, 2011, 5(5): 10-14.
[14] Horsch R B, Fry J E, Hoffman N L, et a1. A simple and general method of transferring genes into plants, Science, 1985, 227: 1229-1231.
[15] 国家烟草专卖局.烟草农艺性状调查方法(YC/T142).北京:中国标准出版社,1998. State Tobacco Monopoly Administration. Investigation Methods of Agronomical Character of Tobacco (YC/T142). Beijing: China Standard Press, 1998.
[16] 吴自明,张欣,万建民.叶绿素生物合成的分子调控.植物生理学通报,2008,44(6):1064-1070. Wu Z M, Zhang X, Wan J M. Molecular regulation of chlorophyll biosynthesis. Plant physiology communications, 2008, 44(6): 1064-1070.
[17] Hotta Y, Tanaka T, Takaoka, H, et al. New physiological effects of 5-aminolevulinic acid in plants: The increase of photosynthesis, chlorophyll content, and plant growth. Bioscience, Biotechnology, and Biochemistry, 1997, 61: 2025-2028.
[18] 康琅,程云,汪良驹,等. 5-氨基乙酰丙酸对秋冬季大棚西瓜叶片光合作用及抗氧化酶活性的影响.西北植物学报,2006,26(11):2297-2301. Kang L, Cheng Y, Wang L J, et a1. Effects of 5-aminolevulinic acid (ALA) on the photosynthesis and anti-oxidative enzymes activities of the leaves of greenhouse watermelon in summer and winter. Acta Bot Boreal-occident Sin, 2006, 26: 2297-2301.
[19] 汪良驹,姜卫兵,黄保健. 5-氨基乙酰丙酸对弱光下甜瓜幼苗光合作用和抗冷性的促进效应.园艺学报,2004,31(3):321-326. Wang L J, Jiang W B, Huang B J. Promotion of photosynthesis by 5-aminolevulinic acid (ALA) during and after chilling stress in melon seedlings grown under low light condition. Acta Horticulturae Sin, 2004, 31(3): 321-326.
[20] 汪良驹,石伟,刘晖,等.外源5-氨基乙酰丙酸处理对小白菜叶片的光合作用效应.南京农业大学学报,2004,27(2):34-38. Wang L J, Shi W, Liu H, et al. Effects of exogenous 5-aminolevulinic acid treatment on leaf photosynthesis of pak-choi. Journal of Nanjing Agricultural University, 2004, 27 (2): 34-38.
[21] 孙永平,汪良驹. ALA处理对遮荫下西瓜幼苗叶绿素荧光参数的影响.园艺学报,2007,34(4):901-908. Sun Y P, Wang L J. Effects of 5-aminolevullinic acid (ALA) on chlorophyll fluorescence dynamics of watermelon seedlings grown under shade condition. Acta Horticulturae Sinica, 2007, 34(4): 901-908.
[22] Tanaka R, Koshino Y, Sawa S, et al. Overexpression of chlorophyllide a oxygenase enlarges the antenna size of photosystem II in Arabidopsis thaliana. Plant J, 2001, 26: 365-373.
[23] Gopal K, Pattanayak, Ajaya K, et al. Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochemical and Biophysical Research Communications, 2005, 326: 466-471.
[1] Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG. Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis[J]. China Biotechnology, 2018, 38(4): 8-16.
[2] Bo-wen CHEN,Hai-long LIU,Yu-fei XIAO,Zi-hai QIN,Ye ZHANG,Xiao-ning ZHANG. Directional Regulation of Lignin Monomer Synthesis in Tobacco by Using COMT Gene and CCoAOMT Gene of Eucalyptus urophylla[J]. China Biotechnology, 2018, 38(3): 24-32.
[3] HAN Lan, JU Lin-fang, NIU Yi-ding, WANG Ying-chun, HASI Agula. Optimization, Synthesis and Transient Expression of Nattokinase Gene in Tobacco (Nicotiana tabacum L.) Leaves[J]. China Biotechnology, 2015, 35(9): 14-20.
[4] HAN Shuang, YANG Zhi-li, CHEN Li-mei. Over Expression of Arabidopsis CAT Improved the Absorption and Tolerance of Gas HCHO in Tobacco[J]. China Biotechnology, 2015, 35(5): 41-48.
[5] WANG Ya-jun, SUN Ming-zhe, LI Ai-fen, ZHANG Cheng-wu. Effects of Nitrogen Concentration on the Growth and Photosynthetic Physiology of Scenedesmus acuminatus[J]. China Biotechnology, 2014, 34(12): 51-58.
[6] LIU Lei, SUN Zhen, SONG Zhong-bang, XIAO Su-qin, CHEN Li-mei. Simultaneous Over-expressions of AOD1 and HPS-PSI in Chloroplasts Creates a Novel Photosynthetic CH3OH-assimilation Pathway and Enhances Its Ability to Assimilate CH3OH[J]. China Biotechnology, 2013, 33(12): 69-78.
[7] WANG Lu-yao, SANG Min, LI Ai-fen, ZHANG Cheng-wu. Effects of Different Nitrogen Nutrition Level on the Growth and Photosynthetic Physiology of Odontella aurita[J]. China Biotechnology, 2012, 32(6): 48-56.
[8] ZHAO Qing, WANG Gang, JI Jing, JIN Chao. Construction of Plant Expression Vector with Constitutive Activation DREB2A and Its Genetic Transformation to Tobacco[J]. China Biotechnology, 2012, 32(11): 42-48.
[9] ZHAO Qing, WANG Gang, JI Jing, JIN Chao. Construction of Plant Expression Vector with Constitutive Activation DREB2A and Its Genetic Transformation to Tobacco[J]. China Biotechnology, 2012, 32(11): 42-48.
[10] HEI Qian, XU Yuan, GUO Li-rong, HUANG Ji-bing, ZHANG Hui, XIA Tao. Overexpression of A New Evolved Na+/H+ Antiporter Gene AtNHXS1 Improved Salt Tolerance of Tobacco(Nicotiana tabacum L.)[J]. China Biotechnology, 2011, 31(8): 24-28.
[11] CAO Guan-lin, AN Xin-min, LONG Cui, BO Wen-hao, ZHANG Zhi-yi. Over-expression of AGM3, a Foreign Mutant Gene of AGAMOUS, Represses Flowering and Alters Floral Organ Development in Transgenic Tobacco[J]. China Biotechnology, 2011, 31(06): 49-57.
[12] LEI Xiu-Ping, CHEN Hua-Jun, LIU Yong, TANG Qi-Hui, CHEN Yu-Bao, LI Wen-Zheng. Expression of the Glycine-ich RNA-binding Protein of Tobacco in E.coli[J]. China Biotechnology, 2010, 30(08): 27-30.
[13] HUANG Dun-Li, LIU Ta-Bei, WANG Gui-Hua, LI Xian-Yong. cDNA Cloning, Bioinformatics Analysis and Construction of  Overexpression Vector of High-chlorophyll Rice Gene DET1[J]. China Biotechnology, 2010, 30(04): 60-64.
[14] SONG Feng, SUN Min, LUO Ke-Meng. A Simple and Rapid PCR-based Method for Identifying Transgenic Tobacco Plants Carrying a Single Copy of the Integrated Gene[J]. China Biotechnology, 2010, 30(04): 83-88.
[15] HU Li-E, SONG Wei, LIU Xiao-Hui, JIANG Ting, DIAO Ling-Xia. Expression of Bioactive Thymosin α1 Using Marker Free Transgenic Tobacco[J]. China Biotechnology, 2010, 30(03): 1-8.