Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (4): 28-33    DOI:
    
The Disruption of STE13 Gene in Pichia pastoris Improves the Expression and Bioactivity of GGH
LU Qing-peng, XU Zhen-hong, SI Jin-song, DOU Wen-fang
Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(670KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Objective: It is barely found that the bioactivity of recombination protein (GLP-1 A2G ) 2 -HSA (GGH) by the cell bioactivity evaluation that related to its protein degradation, which expressed in methylotrophic yeast Pichia pastoris GS115 strain. Therefore, A new P.pastoris GS115 strain with STE13 gene disruption was engineered, helped for the expression of intact GGH, and the bioactivity can be further improved. Methods: The STE13 gene deficient strain GS115/D13 was constructed by the disruption of the P.pastoris homolog of the Saccharomyces cereviaiae dipeptidyl aminopeptidase (STE13 ) gene in Pichia genome by the Cre-Loxp recombination system based on the fusion PCR technology, and the bioactivity of GGH estimated by the cell biological evaluation methods. Results: The recombinant strain GS115/D13 showed the protein degradation much more relieved, apparent bioactivity improved and the yield of about 25.8% increased compared with that in the wild-type strain (GS115/W). Conclusion: The results suggested that STE13 gene disruption offered an expression host for the product of much more intact GGH and helped improve the protein bioactivity.

Key wordsPichia pastoris      GLP-1      STE13      Bioactivity     
Received: 14 January 2013      Published: 25 April 2013
ZTFLH:  Q819  
Cite this article:

LU Qing-peng, XU Zhen-hong, SI Jin-song, DOU Wen-fang. The Disruption of STE13 Gene in Pichia pastoris Improves the Expression and Bioactivity of GGH. China Biotechnology, 2013, 33(4): 28-33.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I4/28

[1] Zander M, Madsbad S, Madsen J L, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet, 2002, 359(9309): 824-830.
[2] Turton M D, O'Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature, 1996, 379(4): 69-72.
[3] Deacon C F, Johnsen A H, Holst J J. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. The Journal of Clinical Endocrinology and Metabolism, 1995, 80(3): 952-957.
[4] Dou W F, Lei J Y, Zhang L F, et al. Expression, purification, and characterization of recombinant human serum albumin fusion protein with two human glucagon-like peptide-1 mutants in Pichia pastoris. Protein Expression and Purification, 2008, 61(1): 45-49.
[5] Prabha L, Govindappa N, Adhikary L, et al. Identification of the dipeptidyl aminopeptidase responsible for N-terminal clipping of recombinant Exendin-4 precursor expressed in Pichia pastoris. Protein Expression and Purification, 2009, 64(2): 155-161.
[6] 关波, 金坚, 李华钟. 改良毕赤酵母分泌表达外源蛋白能力的研究进展. 微生物学报,2011, 51(7): 851-857. Guan B, Jin J, Li H Z. Genetic engineering of Pichia pastoris expression system for improved secretion of heterologous protein: a review. Acta Microbiologica Sinica, 2011,51(7):851-857.
[7] De Schutter K, Lin Y C, Tiels P, et al. Genome sequence of the recombinant protein production host Pichia pastoris. Nature Biotechnology, 2009, 27(6): 561-566.
[8] Yao X Q, Zhao H L, Xue C, et al. Degradation of HSA-AX15(R13K) when expressed in Pichia pastoris can be reduced via the disruption of YPS1 gene in this yeast. J Biotechnol, 2009, 139(2): 131-136.
[9] Boehm T, Pirie-Shepherd S, Trinh L B, et al. Disruption of the KEX1 gene in Pichia pastoris allows expression of full-length murine and human endostatin. Yeast, 1999, 15(7): 563-572.
[10] Shevchuk N A, Bryksin A V, Nusinovich Y A, et al. Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Research, 2004, 32(2): e19.
[11] Pan R Q, Zhang J, Shen W L, et al. Sequential deletion of Pichia pastoris genes by a self-excisable cassette. Fems Yeast Research, 2011, 11(3): 292-298.
[12] Lin-Cereghino J, Wong W W, Xiong S, et al. Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. Biotechniques, 2005, 38(1): 44-45.
[13] Baggio L L, Huang Q L, Brown T J, et al. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (Albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes, 2004, 53: 2492-2500.
[14] Zhou X S, Zhang Y X. Decrease of proteolytic degradation of recombinant hirudin produced by Pichia pastoris by controlling the specific growth rate. Biotechnology Letters, 2002, 24(17): 1449-1453.
[15] Zhang Y W, Liu R J, Wu X Y. The proteolytic systems and heterologous proteins degradation in the methylotrophic yeast Pichia pastoris. Annals of Microbiology, 2007, 57(4): 553-560.
[16] Zhang Q F, Ding F, Xue X Y, et al. Changing the N-terminal sequence protects recombinant Plasmodium falciparum circumsporozoite protein from degradation in Pichia pastoris. Applied Microbiology and Biotechnology, 2008, 78(1): 139-145.
[1] Min-hua XU,Jing-jing ZHANG,Xiao-bao JIN,Xia-bo LI,Yan WANG,Yan MA. Cloning\Expression and Bioactivity of the Chitinase Gene ChiA from the Endophytes of Periplaneta americana[J]. China Biotechnology, 2019, 39(1): 31-37.
[2] Ying CHEN,Hai-peng XIAO,Xiao-yan ZHANG,Qing-wei GONG,Li MA,Wen-jia LI,Xiao-feng CHEN. Expression and Characterization of Recombinant GLP-1-IgG4-Fc Fusion Protein[J]. China Biotechnology, 2018, 38(7): 58-66.
[3] Jian-xue TANG,Yong-le XIAO,Jun-jie PENG,Shi-ji ZHAO,Xiao-ping WAN,Rong GAO. Expression of Fusion Antibacterial Peptide in Recombinant Pichia pastoris and Its Bioactivity In Vitro[J]. China Biotechnology, 2018, 38(6): 9-16.
[4] ZHANG Zhen-yang, YANG Yan-kun, ZHAN Chun-jun, LI Xiang, LIU Xiu-xia, BAI Zhong-hu. Pichia pastoris X-33 ΔGT2 Release the Glycerol Repression on AOX1 and Ef-ficiently Express Heterologous Proteins[J]. China Biotechnology, 2017, 37(1): 38-45.
[5] KANG Guo-kai, FENG Guo-dong, CAO Kun-lin, CHEN Zheng-jun, GE Xiang-yang. Optimization for High Production Fermentation of Lunasin from Recombinant Pichia pastoris[J]. China Biotechnology, 2016, 36(8): 73-79.
[6] SHI Hui-lin, SUN Jing-chun, ZHANG Rong-kai, GAO Da-qi, WANG Ze-jian, GUO Mei-jin, ZHOU Li-qin, ZHUANG Ying-ping. Application of the Electronic Nose on the Online Feedback Control of Methanol Concentration during Glucoamylase Fermentation Optimization by Pichia pastoris[J]. China Biotechnology, 2016, 36(3): 68-76.
[7] LIU Xiao-ming, JIANG Ning, ZHANG Ai-zhong, CAI Peng. Expression of Hybrid Antimicrobial Peptides in Pichia Yeast and Identification of Its Biological Activity[J]. China Biotechnology, 2016, 36(2): 81-89.
[8] LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris[J]. China Biotechnology, 2016, 36(2): 73-80.
[9] NIU Chun-qing, GAO Xiang, LUO Jin-hua, LI Wei, LIU Qiu-ping, CHEN Yun, LIU Yan. Preparation of Recombinant Human Death Receptor 6 Ectodomain and Its Interaction with a Cleaved Amino-terminal Fragment of Human Amyloid Precursor Protein[J]. China Biotechnology, 2016, 36(2): 1-6.
[10] WU Jie, ZHANG Xiao-xue, YU He-shui, LI Wei, JIA Yu-ping, GUO Jiang-yu, ZHANG Li-juan, SONG Xin-bo. Research Progress of High Density Fermentation Process of Pichia pastoris[J]. China Biotechnology, 2016, 36(1): 108-114.
[11] WANG Lan, XU Gang-ling, GAO Kai, WANG Jun-zhi. Progress in Research and Development of Bioactivity Determination of Antibody-based Therapeutics[J]. China Biotechnology, 2015, 35(6): 101-108.
[12] QIAN Kai, ZHANG Jing-jing, WU Su-ping, CAI Yan-fei, CHEN Yun, JIN Jian. Constituted expression and purification of glucagon-like peptide-1 analogue in Pichia pastoris using GAP promoter[J]. China Biotechnology, 2015, 35(5): 66-73.
[13] FU Xiao-meng, KONG Ling-cong, PEI Zhi-hua, LIU Shu-ming, MA Hong-xia. Advance in the Research of Antimicrobial Peptides Gene Expression in Pichia pastor[J]. China Biotechnology, 2015, 35(10): 86-90.
[14] XIA Ye, HUANG Wei-wei, YANG Xu, SUN Peng-yan, YAO Yue-ting, WANG Shi-jie, LIU Cun-bao, SUN Wen-jia, BAI Hong-mei, YAO Yu-feng, MA Yan-bing. The Effects of Carbon Source on High-density Fermentation of Pichia pastoris and HPV16_L1 Expression under the Control of Constitutive TEF-1 Promoter[J]. China Biotechnology, 2015, 35(10): 39-43.
[15] ZHANG Wei, WANG Ya-wei, CHEN Feng, ZHOU Ying, XIONG Hai-rong. Gene Synthesis, Expression and Characterization of a Thermostable Endo-β-1, 4-mannanase[J]. China Biotechnology, 2014, 34(8): 41-46.