Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (4): 114-120    DOI:
    
A Simple and Cost Effective Process for Large-scale Production of Long Oligoribonucleotides
ZHANG Ping-jing1,2, LI Tie-jun1,2, ZHOU Song-feng1,2, ZHU Yuan-yuan1,2,3, CHEN Jian-xin1,2,3, LU Yi-xiang1,2, WEN Feng1,2
1. Biomics Biotechnologies Co. Ltd, Nantong 226016, China;
2. Small RNA Technology and Application Institute, Nantong University, Nantong 226016, China;
3. School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
Download: HTML   PDF(776KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The length and stable secondary structure of RNA molecule are general obstacles in RNA synthesis because of current technological bottlenecks. A simple and cost effective process for large-scale preparation and purification of long oligoribonucleotides with stable secondary structure was presented. High homogeneous RNAs are transcribed in vitro with T7 RNA polymerase using linear 2'-Ome modified DNA templates, which were prepared by primer extension instead of PCR amplification or linearized plasmid DNA transcription to reduce contamination. The crude transcripts are then directly subjected to an anion-exchange HPLC using source 15Q to separate T7 RNA polymerase, unincorporated rNTPs, small abortive transcripts, endotoxin and DNA templates from pure RNA products. The novel process does neither require tedious phenol/chloroform extraction nor denaturation of RNA, which is especially useful for larger RNAs preparations.

Key wordsLong oligoribonucleotides      RNA      Large scale      Transcription      Purification     
Received: 16 January 2013      Published: 25 April 2013
ZTFLH:  Q5-33  
Cite this article:

ZHANG Ping-jing, LI Tie-jun, ZHOU Song-feng, ZHU Yuan-yuan, CHEN Jian-xin, LU Yi-xiang, WEN Feng. A Simple and Cost Effective Process for Large-scale Production of Long Oligoribonucleotides. China Biotechnology, 2013, 33(4): 114-120.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I4/114

[1] Burnett J C, Rossi J J. RNA-based therapeutics: current progress and future prospects. Chemistry & Biology, 2012, 19(1):60-71.
[2] Easton L E, Shibata Y, Lukavsky P J. Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography. RNA, 2010, 16(3):647-653.
[3] Junichi Yano, Gerald E Smyth. New antisense strategies: chemical synthesis of RNA oligomers. Advances in Polymer Science, 2012, 249: 1-48.
[4] 张中华,侯永泰.siRNA制备技术的研究进展.生命科学,2004,16(4):231-235. Zhang Z H, Hou Y T. Progress in the preparation of siRNAs. Chinese Bulletin of Life Sciences. 2004, 16(4):231-235.
[5] McKenna S A, Kim I, Puglisi E V, et al. Purification and characterization of transcribed RNAs using gel filtration chromatography. Nature Protocols, 2007, 2(12):3270-3277.
[6] Yoshida Y, Horii K, Sakai N, et al. Antibody-specific aptamer-based PCR analysis for sensitive protein detection. Analytical and Bioanalytical Chemistry, 2009, 395(4):1089-1096.
[7] 张平静,李忠明,刘庆良.一种简便易行核酸疫苗质粒纯化工艺的开发.中国生物工程杂志,2011,31(4):106-112. Zhang P J, Li Z M, Liu Q L. The development of a modified and simple process for the purification of plasmid DNA. China Biotechnology, 2011, 31(4):106-112.
[8] Kao C, Zheng M, Rüdisser S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA, 1999, 5(9):1268-1272.
[9] Lukavsky P J, Puglisi J D. Large-scale preparation and purification of polyacrylamide free RNA oligonucleotides. RNA, 2004, 10(5):889-893.
[10] 彭薇,唐小军,孙云成,等.多靶标干扰核酸分子及其应用.中国发明专利,CN102191246,2011. Peng W, Tang X J, Sun Y C, et al. Application of multi-target siRNA molecule. China Patent, CN102191246, 2011.
[11] Shields T P, Mollova E, Ste Marie L et al. High performance liquid chromatography purification of homogenous-length RNA produced by trans cleavage with a hammerhead ribozyme. RNA, 1999, 5(9):1259-1267.
[12] Chen C, Ridzon D A, Broomer A J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 2005, 33(20):e179.
[13] Batey R T, Kieft J S. Improved native affinity purification of RNA. RNA, 2007, 13(8):1384-1389.
[14] Anderson A C, Scaringe S A, Earp B E, et al. HPLC purification of RNA for crystallography and NMR. RNA, 1996, 2(2):110-117.
[15] Brown D, Ford L, Cheng A, et al. Metheds and compositions involving miRNA and miRNA inhibitor molecules. United States Patent, US2009/0176723 A1, 2009.
[16] Castanotto D,Sakurai K,Lingeman R, et al. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Research, 2007, 35(15):5154-5164.
[17] Gregory R I, Chendrimada T P, Cooch N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene Silencing. Cell, 2005, 123(4):631-640.
[18] Bauer M, Kinkl N, Meixner A, et al. Prevention of interferon-stimulated gene expression using microRNA-designed hairpins. Gene Therapy, 2009, 16(1):142-147.
[19] Shiba Y, Masuda H, Watanabe N, et al. Chemical synthesis of a very long oligoribonucleotide with 2-cyanoethoxymethyl (CEM) as the 2'-O-protecting group: structural identification and biological activity of a synthetic 110mer precursor-microRNA candidate. Nucleic Acids Research, 2007, 35(10):3287-3296.
[20] Pon R T, Buck G A, Hager K M, et al. Multi-facility survey of oligonueleotide synthesis and an examination of the performance of unpurified primers in automated DNA sequencing. Biotechniques, 1996, 21:680-685.
[21] Hecker K H, Rill R L. Error analysis of chemically synthesized polynucleotides. Biotechniques, 1998, 24:256-260.
[22] 赵松子,沈向群.长链寡核苷酸生物合成方法的研究.西北农业学报,2010, 16(5):47-51. Zhao S Z, Shen X Q. Investigation of biosynthesis method for long oligonucleotides. Acta Agiriculturae Boreali-occidentalis Sinica, 2010, 16(5):47-51.
[1] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[2] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[3] FENG Zhao,LI Jiang-hao,WANG Jia-hua. Functional Analysis of RpRPL22, a Ribosomal Protein Homologous Gene, in the Symbiotic Nodulation Process of Robinia Pseudoacacia[J]. China Biotechnology, 2021, 41(7): 10-21.
[4] LIU Shao-jin,FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng. Market Analysis and Countermeasures of Nucleic Acid Drugs in China[J]. China Biotechnology, 2021, 41(7): 99-109.
[5] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.
[6] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[7] YAN Yu-jia,ZOU Ling. Research Progress on the Biogenesis and Function of piRNAs[J]. China Biotechnology, 2021, 41(5): 45-50.
[8] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[9] LIAO Dan-ni,ZHANG Zhao-yang,JIN Jin,LI Xia,JIA Bin. Progress in the Study of Microbial tRNA and Genetic Codon System Related Applications[J]. China Biotechnology, 2021, 41(4): 64-73.
[10] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[11] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.
[12] YANG Ruo-nan,XU Li,XU Ping,SU Yan. The Development Situation and Suggestions of RNA Therapy Industry[J]. China Biotechnology, 2021, 41(2/3): 162-171.
[13] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[14] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[15] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.