Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (3): 86-91    DOI:
    
Construction and Verification of an Plant Expression Vector pCAMBIA2300-35S-GUS-CaMVterm
GONG Yuan-yong1,2, Feng2, Yong-kun1, GUO Shu-qiao1, SHU Hong-mei1, NI Wan-chao2
1. Institute of Industrial Crops,Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Nanjing 210014, China;
2. Key Laboratory of Plant-Soil Interactions, Ministry of Education; Center for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China
Download: HTML   PDF(564KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Inorder to broaden the scope of use of plant expression vector pCAMBIA2300 and convenient to use for plant genetic engineering scientists in process of construction of expression vector, this research used SacⅠand XhoⅠdouble-digested pJIT166 vector obtaining 35S-GUS-CaMVterm fragment, then inserted this fragment to multiple cloning sites of pCAMBIA2300 vector, constructed the final expression vector pCAMBIA2300-35S-GUS-CaMVterm. The constructed expression vector was mediated by A. tumefacien (strain GV3101) using floral-dip method transformed to Arabidopsis thaliana. The GUS staining result of transgenic plants was further validated the correctness and practicality of this constructed vector. The construction of this expression vector was convenient for constructing gene over-expression vector,made it possible for studying promoter activity and GUS histochemical localization, and can also be used to identify transgenic plants. This constructed expression vector provided a better alternative plant expression vector for plant genetic engineering work.

Key wordsPlant expression vector      pCAMBIA2300      pJIT166     
Received: 05 December 2012      Published: 25 March 2013
ZTFLH:  Q812  
Cite this article:

GONG Yuan-yong, Feng, Yong-kun, GUO Shu-qiao, SHU Hong-mei, NI Wan-chao, LIU Lai-hua. Construction and Verification of an Plant Expression Vector pCAMBIA2300-35S-GUS-CaMVterm. China Biotechnology, 2013, 33(3): 86-91.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I3/86

[1] Hu B, Zhu C, Li F, et al. LEAF TIP NECROSIS1 Plays a Pivotal Role in the Regulation of Multiple Phosphate Starvation Responses in Rice. Plant Physiology, 2011, 156(3): 1101-1115.
[2] 巩元勇. 谷氨酸受体基因参与谷氨酸调控根系生长发育的分子机理研究. 北京:中国农业大学,2011. Gong Y Y. Investigation of the Molecular Mechanism of An Involvement of Glutamate Receptor Gene(s) in Glutamate-regulated Root Growth and development. Beijing: China Agricultural University, 2011.
[3] Zhou Y, Zhang J, Lin H, et al. Morpheus’ molecule1 is required to prevent aberrant RNA transcriptional read-through in Arabidopsis. Plant Physiology, 2010, 154(3): 1272-1280.
[4] 周鹏, 王跃进, 贺普超. 人胰岛素样生长因子-I基因农杆菌工程菌株的构建. 西北农林科技大学学报(自然版) , 2001, 29(3): 19-23. Zhou P, Wang Y J, He P C. The construction of recombinational agrobacterium of huIGF-I. Journal of Northwest Sci-Tech University of Agricultural and Forestry (Natural Science Edition), 2001, 29(3): 19-23.
[5] 陈虞超, 宋玉霞, 石 磊, 等. 水稻硅转运子基因的克隆与表达载体的构建. 西北农业学报, 2009, 18(4): 191-196. Chen Y C, Song Y X, Shi L, et al. Cloning and construction of expression vector of Si transporter gene in rice. Acta Agriculturae Boreali-occidentalis Sinica, 2009, 18(4): 191-196.
[6] 张艳妮, 陈全家, 张桦, 等. 海岛棉DREB基因的克隆及植物表达载体的构建. 新疆农业大学学报, 2010, 33(4): 312-316. Zhang Y N, Chen Q J, Zhan H, et al. Cloning of DREB gene from island cotton (gossypium barbadense L.) and construction of a plant expression vector. Journal of Xinjiang Agricultural University, 2010, 33(4): 312-316.
[7] 田华英, 庞彩红, 夏阳, 等. 尾穗苋凝集素(ACA)基因植物表达载体的构建. 山东农业科学, 2011, 6: 10-13. Tian H Y, Pang C H, Xia Y, et al. Construction of plant expression vector of amaranthus caudatus Agglutinin Gene ( ACA). Shandong Agricultural Sciences, 2011, 6: 10-13.
[8] 院海英, 吴祥辉, 东锐等. GFP基因在新疆小拟南芥和拟南芥中的表达分析. 西北植物学报, 2012, 32(5): 881-885. Yuan H Y, Wu X H, Dong R, et al. Expression analysis of GFP gene in olimarabidopsis pumila and arabidopsis thaliana. Acta Botanica Boreali-Occidentalia sinica, 2012, 32(5): 881-885.
[9] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16(6): 735-743.
[10] Harrison S J,Mott E K,Parsley K,et al. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods,2006,2:19-25.
[11] Weigel D, Glazebrook J. Arabidopsis: a laboratory manual. New York: Cold Spring Harbor Laboratory Press, 2002.