Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (3): 130-134    DOI:
    
Process Optimization of Selectively Enzymatic Synthesis of Isoquercitrin Using Ionic Liquid
SUN Guo-xia1, WANG Jun1, DING Wei-tong1, WANG Kai-xuan1, WU Fu-an 1,2
1. School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018,China;
2. The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018,China
Download: HTML   PDF(758KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  To improve the yield of enzymatic synthesis of isoquercitrin, the process condition of enzymatic reaction was optimized by response surface methodology. According to the results of single-factors experiments, response surface methodology was investigated the selected three factors: ionic liquid content, enzyme concentration and substrate concentration. The result showed that the optimum condition for the enzymatic synthesis of isoquercitrin using ionic liquid as a co-solvent was: ionic liquid content 13.05%, enzyme concentration 9.10 g/L, substrate concentration 0.72 g/L. Under the optimal condition, the yield of isoquercitrin was 99.27 ? 0.55%, increased by 8.60% than before.

Key wordsIonic liquid Co-solvent Response surface method Enzymatic synthesis Isoquercitrin     
Received: 12 October 2012      Published: 25 March 2013
ZTFLH:  Q815  
Cite this article:

SUN Guo-xia, WANG Jun, DING Wei-tong, WANG Kai-xuan, WU Fu-an. Process Optimization of Selectively Enzymatic Synthesis of Isoquercitrin Using Ionic Liquid. China Biotechnology, 2013, 33(3): 130-134.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I3/130

[1] 金越,吕勇,韩国柱,等. 槲皮素及异槲皮素、芦丁抗自由基活性的比较研究. 中草药,2007,38(3):408-412. Jin Y, Lv Y, Han G Z, et al. Comparative study on in vitro anti-free radical activities of quercetin, isoquercetin and rutin. Chinese Traditional and Herbal Drugs, 2007, 38(3): 408-412.
[2] Silva C G,Raulino R J,Cerqueira D M,et al. In vitro and in vivo determination of antioxidant activity and mode of action of isoquercitrin and Hyptis fasciculata. Phytomedicine, 2009,16(8): 761-767.
[3] Motoyama K,Koyama H,Moriwaki M,et al. Atheroprotective and plaque-stabilizing effects of enzymatically modified isoquercitrin in atherogenic apoE-deficient mice. Nutrition, 2009,25(4): 421-427.
[4] 张利斌,张晓庆,李玉平. 异槲皮苷抗抑郁作用实验研究. 药学实践杂志,2011,29(4):272-273. Zhang L B, Zhang X Q, Li Y P. Experimental study on the antidepressant activities of isoquercitrin. Journal of Pharmaceutical Practice. 2011, 29(4): 272-273.
[5] Shimada Y,Dewa Y,Ichimura R,et al. Antioxidant enzymatically modified isoquercitrin suppresses the development of liver preneoplastic lesions in rats induced by β-naphthoflavone. Toxicology, 2010, 268(3): 213-218.
[6] Salem J H,Humeau C,Chevalot I,et al. Effect of acyl donor chain length on isoquercitrin acylation and biological activities of corresponding esters. Process Biochemistry, 2010, 45(3): 382-389.
[7] Wang J,Zhao L L,Sun G X,et al. A comparison of acidic and enzymatic hydrolysis of rutin. African Journal of Biotechnology, 2011, 10(8): 1460-1466.
[8] Wang J,Ma Y L,Wu X Y,et al. Selective hydrolysis by commercially available hesperidinase for isoquercitrin production. Journal of Molecular Catalysis B: Enzymatic, 2012, 81: 37-42.
[9] Vidya P,Chadha A. Pseudomonas cepacia lipase catalyzed esterification and transesterification of 3-(furan-2-yl) propanoic acid/ethyl ester: A comparison in ionic liquids vs hexane. Journal of Molecular Catalysis B: Enzymatic, 2010, 65(1–4): 68-72.
[10] Lang M,Kamrat T,Nidetzky B. Influence of ionic liquid cosolvent on transgalactosylation reactions catalyzed by thermostable β-glycosylhydrolase CelB from Pyrococcus Furiosus. Biotechnology and Bioengineering, 2006, 95(6): 1093-1100.
[11] Park S,Viklund F,Hult K,et al. Vacuum-driven lipase-catalysed direct condensation of l-ascorbic acid and fatty acids in ionic liquids: synthesis of a natural surface active antioxidant. Green Chemistry, 2003, 5(6): 715-719.
[12] Wang J,Sun G X,Yu L,et al. Enhancement of the selective enzymatic biotransformation of rutin to isoquercitrin using an ionic liquid as a co-solvent. Bioresource Technology. Doi: 10.1016/j.biortech.2012.10.098.
[13] Wang R,Chen P,Jia F,et al. Optimization of polysaccharides from Panax japonicus C.A. Meyer by RSM and its anti-oxidant activity. International Journal of Biological Macromolecules, 2012, 50(2): 331-336.
[14] 刘鹏,王泽南,张仕发,等. 丛梗孢酵母发酵产赤藓糖醇的响应面优化. 中国生物工程杂志,2011,31(5): 69-74. Liu P, Wang Z N, Zhang S F, et al. Optimization of erythriol production by Moniliella acetoabutans using response surface methodology. China Technology, 2011, 31(5): 69-74.
[1] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[2] LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model[J]. China Biotechnology, 2021, 41(2/3): 38-44.
[3] WANG You-bei,GUO Si-yu,CHANG Bi-bo,YE Rui-fang,HUA Qiang. Establishment of Conjugation System for the Spiramycin Producer Streptomyces spiramyceticus[J]. China Biotechnology, 2021, 41(2/3): 45-52.
[4] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[5] ZHU Ya-xin, DUAN Yan-ting, GAO Yu-hao, WANG Ji-yue, ZHANG Xiao-mei, ZHANG Xiao-juan, XU Guo-qiang, SHI Jin-song, XU Zheng-hong. Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios[J]. China Biotechnology, 2021, 41(1): 1-11.
[6] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[7] FAN Bin,CHEN Huan,SONG Wan-ying,CHEN Guang,WANG Gang. Advances in Lactic Acid Bacteria Gene Modification[J]. China Biotechnology, 2020, 40(6): 84-92.
[8] MEI Yu-wei,YANG Zi-yun,YU Fan,LONG Xu-wei. Recent Progress on Fermentation and Antibacterial Applications of Surfactin[J]. China Biotechnology, 2020, 40(5): 105-116.
[9] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[10] WANG Ze-jian,LI Bo,WANG Ping,ZHANG Qin,HANG Hai-feng,LIANG Jian-guang,ZHUANG Ying-ping. Effects of Glucose and Maltose Substrates on the Intracellular Metabolic Flux Distribution of Curdlan Polysaccharides Biosynthesis by Alcaligenes faecalis[J]. China Biotechnology, 2020, 40(5): 30-39.
[11] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[12] QIN Xu-ying,YANG Hong-jiang. Research Progress on Techniques for Separation, Purification of Bacteriophages[J]. China Biotechnology, 2020, 40(5): 78-83.
[13] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[14] CUI Zi-hong,JI Xiu-ling. Advances in Bacteria-Phage Antagonistic Coevolution[J]. China Biotechnology, 2020, 40(1-2): 140-145.
[15] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.