Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (3): 117-122    DOI:
    
The Stability Analysis of IL3 Fusion Protein and Contrast Study of Its Biologic Activity Before and After Protein Modification
ZHANG Yan-jun1, LIU Rong2, ZHANG Meng-nan1, ZHANG Xiao-long3, YUANXiang-fei3, MIAO Qing-fang1, ZHEN Yong-su1
1. State Key Laboratory of Experimental Hematology, Institute of Hematology&Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China;
2. Henan Province Academician Workstation, the People’s Hospital of Zhengzhou, Henan 450053, China;
3. Institute of Medicimal Biotechnology Academy of Medical Sciences&Peking Union Medical College, Beijing 100050, China
Download: HTML   PDF(1217KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The interleukin-3 receptor alpha chain (IL-3Ra or CD123) was strongly expressed in AML stem cells but it was not detectable in hemopoietic stem cell, which can be used as target for treatment.We constructed IL3-LDP expression plasmid to produce fusion protein for tumor stem cells targeted removing.We found that the residues at 131 and 132 in IL-3 is the strategic positions leading to protein-degradation by protein mass spectrometry.The stability of IL3 fusion protein can be significantly improved after transformed mainly aiming at these two positions by genetic modification , moreover, the yield and binding activity were not changed. This conclusion may be widely applied to improving protein stability.

Key wordsIL3      Fusion protein      Genetic modification      Protein mass spectrometry      AML     
Received: 28 October 2012      Published: 25 March 2013
ZTFLH:  Q816  
Cite this article:

ZHANG Yan-jun, LIU Rong, ZHANG Meng-nan, ZHANG Xiao-long, YUANXiang-fei, MIAO Qing-fang, ZHEN Yong-su, ZHANG Yi-zhi. The Stability Analysis of IL3 Fusion Protein and Contrast Study of Its Biologic Activity Before and After Protein Modification. China Biotechnology, 2013, 33(3): 117-122.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I3/117

[1] Blair A,Sutherland H J. Primitive acute myeloid leukemia cells with long term proliferative ability in vitro and in vivo lack surface expression of c-kit(CD117). Exp Hematol,2000,28:660-671.
[2] Jordan C T,Upchurch D,Szilvassy S J,et al. The interleukin-3 receptor alpha chain in a unique marker for human acute myelogenous leukemia stem cells. Leukemia,2000,14:1777-1784.
[3] Hu J L, Xue Y C, Xie M Y, et al. A new macromolecular antitumor antibiotic, C-1027. I. Discovery, taxonomy of producing organism, fermentation and biological activity. J Antibiot (Tokyo) 1988,41(11): 1575-1579.
[4] 任思楣,张砚君,彭洪薇,等.靶向白血病干细胞CD123的毒性融合蛋白的制备.白血病.淋巴瘤,2011,20(8):490-493. Ren S M, Zhang Y J,Peng H W, et al. Preparation of a toxicity fusion protein targeting to CD123 on leukemia stem cell.Journal of Leukemia & Lymphoma,2011, 20(8):490-493.
[5] Frankel A E, McCubrey J A, Miller M S, et al. Diphtheria toxin fused to human interleukin-3 is toxic to blasts from patients with myeloid leukemias. Leukemia, 2000,14:576–585.
[6] Michaela F B, Arthur E F, Richard L A. A diphtheria Toxin-Interleukin 3 fusion protein is cytotoxic to primitive acute myeloid leukemia progenitors but spares normal progenitors. Cancer Research, 2002,15:1730-1736.
[7] Liu T F, Urieto J O, Moore J E, et al. Diphtheria toxin fused to variant interleukin-3 provides enhanced binding to the interleukin-3 receptor and more potent leukemia cell cytotoxicity. Exp Hematol, 2004,32:277-281.
[8] Hogge D E, Yalcintepe L, Wong S H, et al. Variant diphtheria toxin interleukin-3 fusion proteins with increased receptor affinity have enhanced cytotoxicity against acute myeloid leukemia progenitors. Cancer Therapy: Preclinical, 2006,12(4):1284-1291.
[9] Cohen K A, Liu T F, Cline J M, et al.Safety evaluation of DT388IL3, a diphtheria toxin/interleukin 3 fusion protein, in the cynomolgus monkey. Cancer Immunol Immunother, 2005,54(8):799-806.
[10] Zhen Y S,Ming X Y,Yu B,et al.A new macromolecular antitumor antibiotic,C-1027 Ⅲ Antitumor activity.J Antibiot(tokyo) ,1989,42(8):1294-1298.
[11] 高瑞娟,李电东,甄永苏. 烯二炔类抗肿瘤抗生素力达霉素的作用机制研究进展.中国新药杂志, 2006,15(13):1039-1043. Gao R J, Li D D, Zhen Y S. Study on mechanisms of action of enediyne antitumor antibiotic lidamycin.Chinese Journal of New Drugs, 2006,15(13):1039-1043.
[1] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[2] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[3] XU An-jian,LI Yan-meng,WU Shan-na,ZHANG Bei,YAO Jing-yi. PHP14 Plays a Role in Epithelial-Mesenchymal Transition of AML-12Cell Through Interaction with Vimentin[J]. China Biotechnology, 2021, 41(2/3): 1-6.
[4] XU Xiao, CHENG Chi, YUAN Kai, XUE Chuang. Research Progress of Cellulase Production in Trichoderma reesei[J]. China Biotechnology, 2021, 41(1): 52-61.
[5] DAO Feng-ting,YANG Lu,WANG Ya-zhe,CHANG Yan,YUAN Xiao-ying,LI Ling-di,CHEN Wen-min,LONG Ling-yu,LIU Yan-rong,QIN Ya-zhen. Characteristics and Prognostic Significance of Ki-67 Expression at diagnosis in Adult t(8;21) Acute Myeloid Leukemia[J]. China Biotechnology, 2019, 39(9): 11-18.
[6] Ying CHEN,Hai-peng XIAO,Xiao-yan ZHANG,Qing-wei GONG,Li MA,Wen-jia LI,Xiao-feng CHEN. Expression and Characterization of Recombinant GLP-1-IgG4-Fc Fusion Protein[J]. China Biotechnology, 2018, 38(7): 58-66.
[7] SHEN Ping, WU Yu-hua, LIANG Jin-gang, LU Xin, ZHANG Qiu-yan, WANG Hao-qian, LIU Peng-cheng. The Overview in Development and Application of Genetically Modifed Crops[J]. China Biotechnology, 2017, 37(1): 119-128.
[8] CAO Rong-yue, YU Min-xia, ZHANG Xin-li, LI Man-man, MIAO Zi-tao, JIN Liang. Construction,Expression,Purification of VEGFⅡ/GRP Fusion Protein and the Effects on RM-1 Prostate Tumor in Mice[J]. China Biotechnology, 2016, 36(8): 9-15.
[9] ZENG Si-yu, SHI Tian-qiong, SHI Kun, REN Lu-jing, HUANG He, JI Xiao-jun. Establishment and Application of Genetic Motification System for Mortierella alpina[J]. China Biotechnology, 2016, 36(7): 112-116.
[10] CHEN Hua-xin, WU Jing, ZHAO Jin, JIANG Peng. Expression and Characterization of Fusion Protein of Single-chain Variable Fragment of Alpha Fetoprotein and Allophycocyanin Alpha Subunit[J]. China Biotechnology, 2016, 36(5): 74-80.
[11] XU Lin-jie, SUN Zhuo-jing, YANG Xiong-nian, ZHU Yong-hong, LIU Pei-lei. Cognition and Development of Genetic Modification from Perspective of Sciences[J]. China Biotechnology, 2016, 36(4): 30-34.
[12] GAO Xiang-lei, LIN Shu-shan, GONG Qing-wei, PAN Lan, MA Li, FENG Yan, LIN Xiao-que, ZENG Jian, LI Wen-jia, CHEN Xiao-feng, CHEN Ying. Purification and Characterization of Recombinant Human Glucagon-like Peptide-1 Analogue[J]. China Biotechnology, 2016, 36(12): 15-20.
[13] QIAN Jian ying, XU Zheng hong, DOU Wen fang. Study on the Preparation Technology of Injectable Powder of Fusion Protein GGH[J]. China Biotechnology, 2016, 36(11): 48-53.
[14] GONG Long-cai, LUO Zhen-ming, YANG Yan-qing, WANG Zhen-yu, XIANG Jun-jian, WANG Hong. Prokaryotic Expression and Identification of cTnI-linker-TnC Fusion Protein[J]. China Biotechnology, 2015, 35(4): 48-53.
[15] YAN Li, WANG Kang, LI Rui-jian, BAI Yi, BAI Xian-hong, ZHOU Hai-ping. Manufaction of a New High-glycosylated Fusion Protein NESP-Fc[J]. China Biotechnology, 2015, 35(4): 80-85.