Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (12): 79-85    DOI:
    
The Stability Reconstruction of β-mannanase with N-glycosylation Modification
XIE Chun-fang1,3, LI Yu-feng2,3, LIU Da-ling1,3, YAO Dong-sheng2,3,4
1. Department of Bioengineering, Jinan University, Guangzhou 510632, China;
2. Institute of Biomedicine, Jinan University, Guangzhou 510632, China;
3. Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China;
4. National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
Download: HTML   PDF(1236KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  N-glycosylation is one of the most important posttranslational modification of proteins in eukaryotes. A rational strategy to introduce N-glycosylation site was proposed to Armillariella tabescens beta mannose Man47.Then g-123 mutant with EAS(enhanced aromatic sequence) sequence was built through the molecular docking, secondary structure analysis and feasibility analysis of glycosylation. The sequence of g-123 mutant was inserted into SMD1168 with the yeast α-mating factor, then transformed it into Pichia by electroporation to obtain the recombinants. Finally the thermal stability, acid and alkali stability, pepsin-resistance and trypsin-resistance of g-123 and wild type were analyzed. The results showed that compared with wild type, the thermal stability, acid and alkali stability, protease resistance of the mutant g-123 with glycosylation was improved.

Key wordsN-glycosylation      Posttranslational modification      Protein design      Bioinformatics     
Received: 03 September 2013      Published: 25 December 2013
ZTFLH:  Q816  
Cite this article:

XIE Chun-fang, LI Yu-feng, LIU Da-ling, YAO Dong-sheng. The Stability Reconstruction of β-mannanase with N-glycosylation Modification. China Biotechnology, 2013, 33(12): 79-85.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I12/79

[1] Zahura U A, Rahman M M, Inoue A, et al. An endo-beta-1, 4-mannanase, AkMan, from the common sea hare Aplysia kurodai. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2010, 157(1): 137-143.
[2] Prakash R, Johnston S L, Boldingh H L, et al. Mannans in tomato fruit are not depolymerized during ripening despite the presence of endo-beta-mannanase. Journal of Plant Physiology, 2012, 169 (12): 1125-1133.
[3] Aguilera-Gálvez C, Vásquez-Ospina J J, Gutiérrez-Sanchez P, et al. Cloning and biochemical characterization of an endo-1, 4-β-mannanase from the coffee berry borer Hypothenemus hampei. BMC Research Notes, 2013, 6:333.
[4] 杜先锋, 李平. 四川白魔芋球茎中甘露聚糖酶部分酶学性质. 合肥工业大学学报(自然科学版), 2000, 23(5):679-682. Du X F, Li P. Some properties of U-mananase from the tubers of Amorphophallus albus. Journal of Hefei University of Technology, 2000, 23(5):679-682.
[5] 周海燕, 赵文魁, 吴永尧. 甘露聚糖酶的多样性分析. 生物技术通报, 2008, 2: 60-67. Zhou H Y, Zhao W K, Wu Y Y. Review about the diversity of mannanase. Biotechnology Bulletin, 2008, 2: 60-67.
[6] Dhawan S, Kaur J. Microbial mannanases: an overview of production and applications. Critical Reviews in Biotechnology, 2007, 27 (4):197-216.
[7] Varbanets' L D, Borzova N V. Mannanases of microorganisms. Ukr Biokhim Zh, 2009, 81(3):5-20.
[8] 胡凤娟, 王旭曼, 刘大岭, 等. 具蛋白酶抗性的Armillariella tabescens β-甘露聚糖酶MAN47 的分子定向改造. 中国生物工程杂志, 2011, 31 (10): 75-82. Hu F J, Wang X M, Liu D L, et al. Directional molecular rebuilding of β-mannanase MAN47 with trypsin-resistance from Armillariella tabescens. China Biotechnology, 2011, 31 (10): 75-82.
[9] Shetty R P, Endy D, Knight T F. Engineer BioBrick vectors from BioBrick parts. Journal of Biological Engineering, 2008, 2:5.
[10] Li J F, Zhao S G, Tang C D, et al. Cloning and functional expression of an acidophilic beta-mannanase gene (Anman5A) from Aspergillus niger LW-1 in Pichia pastoris. Journal of Agricultural and Food Chemistry, 2012, 60 (3): 765-773.
[11] Cao Y N, Wang Y R, Meng K, et al. A novel protease-resistant α-galactosidase with high hydrolytic activity from Gibberella sp F75: gene cloning, expression, and enzymatic characterization. Applied Microbiology and Biotechnology, 2009, 83 (5): 875-884.
[12] 马俊孝, 张景燕, 刘玉庆. 体外法评价饲用木聚糖酶的研究, 饲料工业, 2009, 30 (4):21-23. Ma J X, Zhang J Y, Liu Y Q. The evaluation on forage xylanase in vitro. Feed Industry, 2009, 30 (4): 21-23.
[13] Li Y F, Hu F J, Wang X M, et al. A rational design for trypsin-resistant improvement of Armillariella tabescens β-mannanase MAN47 based on molecular structure evaluation. Journal of Biotechnology, 2013, 163 (4): 401-407.
[14] Jefferis R. Review of glycosylation engineering of biopharmaceuticals: Methods and protocols. MAbs, 2013, 5(5):638-640.
[15] Agard N J, Bertozzi C R. Chemical approaches to perturb, profile, and perceive glycans. Accounts of Chemical Research, 2009, 42(6):788-797.
[16] Kupper C E, Rosencrantz R R, Henβen B, et al. Chemo-enzymatic modification of poly-N-acetyllactosamine (LacNAc) oligomers and N, N-diacetyllactosamine (LacDiNAc) based on galactose oxidase treatment. Beilstein J Org Chem, 2012, 8: 712-725.
[17] Fonseca-Maldonado R, Vieira D S, Alponti J S, et al. Engineering the pattern of protein glycosylation modulates the thermostability of a GH11 xylanase. The Journal of Biological Chemistry, 2013, 288(35): 25522-2534.
[18] Flores-Fernández G M, Griebenow K. Glycosylation improves α-chymotrypsin stability upon encapsulation in poly(lactic-co-glycolic)acid microspheres. Results Pharma Sci, 2012, 2: 46-51.
[19] van der Post S, Subramani D B, Bckstrm M, et al. Site-specific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the Porphyromonas gingivalis secreted cysteine protease (RgpB). The Journal of Biological Chemistry, 2013, 288(20): 14636-1446.
[20] Culyba E K, Price J L, Hanson S R, et al. Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns. Science, 2011, 331 (6017): 571-575.
[21] Price J L, Powers D L, Powers E T, et al. Glycosylation of the enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn contexts. Proceedings of the National Academy of Sciences of USA, 2011, 108 (34): 14127-14132.
[1] LIN Yan-mei,LUO Xiang,LI Rui-jie,QIN Xiu-lin,FENG Jia-xun. Probing the Role of N-glycosylation on the Catalytic Domain in the Activity and Secretion of Fungal Cellobiohydrolase[J]. China Biotechnology, 2021, 41(4): 18-29.
[2] Qing-meng LI,Sheng-tao LI,Ning WANG,Xiao-dong GAO. Expression, Purification and Activity Assay of Yeast α-1,2 Mannosyltransferase Alg11[J]. China Biotechnology, 2018, 38(6): 26-33.
[3] YAN Peng-cheng, ZHANGY Zhan-jiang, PEI Zhi-yong, FU Yan-ting, CHEN Yu-bao, LIU Tong. Design and Realization of Cloud Platform for Medicinal Plant Conservation[J]. China Biotechnology, 2017, 37(11): 37-44.
[4] ZHANG Li-li, XU Bi-yu, LIU Ju-hua, JIA Cai-hong, ZHANG Jian-bin, JIN Zhi-qiang. Analysis of Banana MaASR1 Gene Expression Profiles in Arabidopsis Under Drought Stress[J]. China Biotechnology, 2017, 37(11): 59-73.
[5] HE Shi-bao, YANG Cheng-fei, SHANG Sha, WANG Ling-yan, TANG Wen-chao, ZHU Yong. Cloning and Expression Analysis of Juvenile Hormone Binding Protein Gene Bmtol in Silkworm,Bombyx mori[J]. China Biotechnology, 2017, 37(10): 16-25.
[6] CHEN Li-na, TENG Mu-zhou, LU Yan-fang, ZHENG Wen-ling, MA Wen-li. miR-335 Expression in Tumor Tissues and Bioinformatic Analysis of Predicted Target Genes[J]. China Biotechnology, 2016, 36(3): 23-30.
[7] ZHAO Feng, ZHANG Yi-jun, RAN Yan-hong, WANG Xing-yong, YE Qian-jun, LI Hong-jian. Analysis of rhIL-12 Disulfide Bond And N-glycosylation Sites and C-terminal Amino Acid Sequence[J]. China Biotechnology, 2014, 34(5): 39-53.
[8] MA Zhong-rui, HAN Dong-lei, ZHAO Jun-fei, CHEN Meng-lin, CHEN Min. Recent Developments in N-linked Glycoproteins Production in Escherichia coli and Glycoprotein Vaccines[J]. China Biotechnology, 2013, 33(11): 92-98.
[9] SHEN Jian, ZHANG Yue, PAN Qiu-hui, SUN Fen-yong. Bioinformatics Analysis and Prediction of miR-17-92 Cluster Mediated Regulatory Network[J]. China Biotechnology, 2012, 32(03): 69-75.
[10] AI Rui-ting, WANG De-ping. Analysis of Bioinformatics & Computational Biology Topics in "Eleventh Five-Year Plan" National High Technology Research and Development Program[J]. China Biotechnology, 2011, 31(12): 126-132.
[11] E Guang-xin, LIU Di, ZHANG Dong-jie, CUI Yu. Cloning, Expression and Polymorphism Analysis of Porcine SRPK3 Gene[J]. China Biotechnology, 2011, 31(03): 46-54.
[12] HUANG Dun-Li, LIU Ta-Bei, WANG Gui-Hua, LI Xian-Yong. cDNA Cloning, Bioinformatics Analysis and Construction of  Overexpression Vector of High-chlorophyll Rice Gene DET1[J]. China Biotechnology, 2010, 30(04): 60-64.
[13] LIAO Bing, TUN Ning, HAN Feng-Dong, LIN Xiu-Kun. Cloning and bioinformatics analysis of Fgf9, a novel gene related to sex determination in cow[J]. China Biotechnology, 2009, 29(08): 45-50.
[14] YI Le-Fei- Wang-Ping- Zhou-Xiang-Gong- Liu-Chu-Wu. cDNA cloning and bioinformatic analysis of SAMS gene from porphyra yezoensis[J]. China Biotechnology, 2009, 29(07): 43-49.
[15] Zhang Yu-Liang. Cloning and Bioinformatics Analysis of PmNHX1 gene fromXinjiang Halophyte Plantago maritima[J]. China Biotechnology, 2009, 29(01): 27-33.