Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (12): 29-34    DOI:
    
Expression, Purification and Biological Activity of Arginine Mutants of Bacillus subtilis RecQ Helicase
WU Hai-li1, ZHANG San-jun2, DU Bing1, QIAN Min1, REN Hua1
1. School of Life Science, East China Normal University, Shanghai 200241, China;
2. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Download: HTML   PDF(686KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  RecQ helicases are one of the most important macromolecules in the process of molecular metabolism. They play essential roles in maintaining the stability of the genetic materials in cells. The arginine residues of Bacillus subtilis RecQ play important roles in ATP hydrolyzation and binding activities. The DNA corresponding to the coding sequence of the Bacillus subtilis RecQ helicase gene was amplified by PCR from the chromosome DNA of Bacillus subtilis 168, the sequence size is about 1.5kb. The arginine residues (arg319 and arg322) of Bacillus subtilis RecQ were mutated separately or simultaneously to alanine residues by overlapping PCR method, then wild type and mutants were subcloned into the expression vector pET24a(+).The recombinant proteins were induced to express in E.coli BL21(DE3)with IPTG. All of the proteins obtained in vitro were with above 90% purity and good solubility, and then the ATP hydrolysis of wild type and mutants were detected. The results showed that Bacillus subtilis RecQ and mutants had DNA-dependent ATPase activity in concentration-dependent manner. However, the ATP hydrolysis activities of mutants were significantly reduced compared to the wild RecQ. The consequence state that the two arginine residues took important part in interacting RecQ helicaese with ATP. These results are helpful to study the structures and functions of other members of the RecQ family helicases.

Key wordsBacillus subtilis      RecQ heliceses      Protein expression      Protein purification     
Received: 23 September 2013      Published: 25 December 2013
ZTFLH:  Q71  
Cite this article:

WU Hai-li, ZHANG San-jun, DU Bing, QIAN Min, REN Hua. Expression, Purification and Biological Activity of Arginine Mutants of Bacillus subtilis RecQ Helicase. China Biotechnology, 2013, 33(12): 29-34.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I12/29

[1] Bdel Monem M, Hoffmann Berling H. Enzymic unwinding of DNA purification and characterization of a DNA-dependent ATPase from Escherichia coli. Eur J Biochem, 1976, 65:431-440.
[2] Rezazadeh S.RecQ helicases;at the crossroad of genome replication, repair, and recombination. Mol Bio Rep, 2012, 39(4):4527-4543.
[3] Rittinger K, Walker P A, Eccleston J F, et al. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature, 1997, 388: 693-697.
[4] Scheffzek K, Ahmadian M R, Kabsch W, et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science, 1997, 277:333-338.
[5] Nadanaciva S, Weber J, Wilke-Mounts S, et al. Importance of F1-ATPase residue alpha-Arg-376 for catalytic transition state stabilization. Biochemistry, 1999, 38:15493-15499.
[6] Raja Chakraborty, Sai Prasad Pydi, Scott Gleim, et al. Site-directed mutations and the polymorphic variant Ala160Thr in the human thromboxane receptor uncover a structural role for transmembrane helix 4. PLoS One, 2012, 7(1):e29996.
[7] Xu H Q, Deprez E, Zhang A H, et al. The Escherichia coli RecQ helicase functions as a monomer. J Biol Chem, 2003, 278(37):34925-34933.
[8] 骆衡, 陈祥, 段丽霞, 等, 大肠杆菌RecQ解旋酶的生物学活性分析. 中国生物化学与分子生物学报, 2010(12):1143-1150. Luo H, Chen X, Duan L X, et al. Analysis of biological activity of Escherichia coli RecQ helicase. Chinese Journal of Biochemistry and Molecular Biology, 2010, 26(12):1143 -1150.
[9] 黄振蓉, 吴海丽, 张三军, 等.E.coli.RecQ解旋酶克隆表达纯化及生物学活性检测. 中国生物工程杂志, 2013, 3:21-27. Huang Z R, Wu H L, Zhang S J, et al. Expression, purification and biological activity of Escherichia coli RecQ helicase. China Biotechnology, 2013, 33(3):21-27.
[10] Hua Ren, Shuo-Xing Dou, Pascal Rigolet, et al. The arginine finger of the Bloom syndrome protein:its structural organization and its role in energy coupling. Nucleic Acids Research, 2007, 35(18):6029-6041.
[11] Maja Buljubasic, Jelena Repar, Ksenija Zahradka, et al. RecF recombination pathway in Escherichia coli cells lacking RecQ, UvrD and HelD helicases. DNA Repair, 2012 (11):419-430.
[12] Yoshimasa Yamana, Shuji Sonezaki, Hiroaki I, et al. Mismatch-induced lethality due to a defect in Escherichia coli RecQ helicase in exonuclease-deficient background: Dependence on MutS and UvrD functions. Plasmid, 2010, 63:119-127
[13] Kazumi Mashimo, Masakado Kawata, Kazuo Yamamoto, et al. Roles of the RecJ and RecQ proteins in spontaneous formation of deletion mutations in the Escherichia coli K12 endogenous tonB gene. Mutagenesis, 2003, 18(4):355-363.
[14] Maja Buljubasic, Davor Zahradka, Ksenija Zahradka. RecQ helicase acts before RuvABC, RecG and XerC proteins during recombination in recBCD sbcBC mutants of Escherichia coli. Research in Microbiology, 2013, 164:987-997.
[15] Hanada Katsuhiro, Toshiyuki Ukita, Yuko Kohno, RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc Natl Acad Sci USA, 1997, 94:3860-3865.
[16] Wenyan Jiang, David Bikard, David Cox, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(3):233-241.
[1] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[2] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[3] Jun-jun CHEN,Ying LOU,Yuan-xing ZHANG,Qin LIU,Xiao-hong LIU. Expression and Purification of Proliferating Cell Nuclear Antigen in Spodoptera frugiperda Cells[J]. China Biotechnology, 2018, 38(7): 14-20.
[4] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[5] Wei ZHAO,Jing-da LI,Qing-ping LIU. The Development of Downstream Continuous Purification Technology of Recombinant Protein[J]. China Biotechnology, 2018, 38(10): 74-81.
[6] WANG Pei, CHEN Kai, GAO Song. Production of Restriction Endonuclease Not I Utilizing CpG DNA Methylase M.Sss I Co-expression Vector[J]. China Biotechnology, 2017, 37(8): 51-58.
[7] WANG Ming-xuan, CHEN Hai-qin, GU Zhen-nan, CHEN Wei, CHEN Yong-quan. Expression, Purification of Mortierella alpina Δ9 Desaturase and Characterization of Its Cytochrome b5 Domain[J]. China Biotechnology, 2017, 37(3): 43-50.
[8] ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores[J]. China Biotechnology, 2017, 37(1): 71-80.
[9] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[10] HU Gui-yuan, YANG Tao-wei, RAO Zhi-ming, LIU Mei, XU Mei-juan, ZHANG Xian. Improved Production of 2,3-Butanediol by Enhancing the Level of Intracellular NADH and Activity of Acetoin Reductase[J]. China Biotechnology, 2016, 36(6): 57-64.
[11] HAO Wen-bo, JI Fang-ling, WANG Jing-yun, ZHANG Yue, WANG Tian-qi, CHE Wen-shi, BAO Yong-ming. Effects of D194G Mutant on meso-2, 3-Butanediol Dehydrogenase Catalytic Properties[J]. China Biotechnology, 2016, 36(1): 47-54.
[12] WANG Shi-qi, LIU Jing-ying, LIU Cheng-lang, LI Chun, HU Xiao-feng, XIA Li-qiu, ZHANG You-ming. Construction and Expression of Prokaryotic Expression Vector of Soluble TNF-related Apoptosis Inducing Ligand and Its Anti-tumor Activity[J]. China Biotechnology, 2015, 35(12): 1-7.
[13] XIE Zhi-dan, FAN Wen, JIA Dong-cheng, YANG Na, XIA Zheng-yuan, QIAO Min. Recent Developments in Spore Surface Display of Bacillus subtilis[J]. China Biotechnology, 2014, 34(8): 105-111.
[14] LIU Hui-li, LI Yuan-yuan, JU Rui-cheng, ZHAO Hong-tao, YANG Qing. Isolation, Identification and Fermentation Optimization of Antagonistic Bacillus subtilis KC-5[J]. China Biotechnology, 2014, 34(3): 96-102.
[15] SUN Shao-fei, WANG Bei-lei, YUAN Ting, ZHANG Bing, GUO Gang, ZHANG Ru. Expression and Fusion Protein TAT-NLS-Nkx6.2 in E.coli and Its Purification and Biological Analysis[J]. China Biotechnology, 2013, 33(9): 24-30.