Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (12): 121-126    DOI:
    
The Fermentation Advantage of Kluyveromyces lactis and Its Application in the Field of Food Enzyme
WANG Yu-hai, ZHANG Hui-bin, YANG Hui-min, MENG Qing-qing, WANG Feng-huan
Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Food Flavor Chemistry, School of Food and Chemical Engineering, Beijing Technology and Business University , Beijing 100048, China
Download: HTML   PDF(419KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Kluyveromyces lactis is the yeast that can use lactic acid as its sole carbon and energy source, with the extremely simple nutritional requirements, vigorous growth, large biomass growth,temperature adaptation to a wide range, good secreting function of protein, does not produce endotoxin, human security and other advantages. It has also shown great potential as a host system to express food enzyme. From biological characteristics, strain selection, fermentation process optimization, analysis of the effect of expression, modification of the heterologous protein these many aspects to elaborate the fermentation characteristics of Kluyveromyces lactis, and pointed out that it has a unique fermentation advantage. Providing a brief overview of Kluyveromyces lactis used in the field of food enzyme.

Key wordsKluyveromyces lactis      Food enzyme      Heterologous protein     
Received: 08 October 2013      Published: 25 December 2013
ZTFLH:  Q819  
Cite this article:

WANG Yu-hai, ZHANG Hui-bin, YANG Hui-min, MENG Qing-qing, WANG Feng-huan. The Fermentation Advantage of Kluyveromyces lactis and Its Application in the Field of Food Enzyme. China Biotechnology, 2013, 33(12): 121-126.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I12/121

[1] Cregg J M, Cereghino J L, Shi J Y, et al. Recombinant protein expression in Pichia pastoris. Mol Biotechnol, 2000, 16(1): 23-52.
[2] 侯爱华, 鲍晓明, 杨国梁.外源基因在酵母中稳定表达的策略及研究进展.微生物学杂志, 2002, 22(4): 42-44. Hou A H, Bao X M, Yang G L. Strategy and advance in heterologous genes stable and efficient expression in yeast. Journal of Microbiology, 2002, 22(4): 42-44.
[3] Raffael S, Karin D B. Genetics and molecular physiology of the yeast Kluyveromyees lactis.Fungal Genet Biol, 2000, 30:173-190.
[4] 赵泰霞, 孟祥晨, 张巧云.酸奶中污染酵母菌和霉菌的分离及鉴定.食品工业科技, 2012, 33(02):189-192. Zhao T X, Meng X C, Zhang Q Y. The isolation and identification of yeast and molds from the spoilage yogurts. Science and Technology in Food Industry, 2012, 33(02):189-192.
[5] 刘波, 马清钧, 吴军.乳酸克鲁维酵母表达外源蛋白研究进展.生物技术通讯, 2007, 18(6): 1039-1042. Liu B, Ma Q J, Wu J. Advance in the production of heterologous proteins in the yeast Kluyveromyces Lactis. Letters in Biotechnology, 2007, 18(6):1039-1042.
[6] Manuel B, Esther R B, Ma E C, et al. Extraction of intracellular proteins from Kluyveromyces lactis. Food Technol, 2001, 39(2): 135-139.
[7] Becerra M, Gonza lez-Siso M I, Cerdan M E. A transcriptome analysis of Kluyveromyces lactis growing in cheese whey. International Dairy Journal, 2006, 16: 207-214.
[8] Krijger J J, Baumann J, Wagner M, et al. A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis. Microbial Cell Factories, 2012, 11:112.
[9] 张萃荟, 杨瑞金, 张文斌, 等.适合乳果糖生产的菌株K.lactis K1-16-7 产 β-半乳糖苷酶发酵条件的优化.食品科技, 2008, 7: 6-10. Zhang H C, Yang R J, Zhang W B, et al. Optimization fermentation medium of K.lactis K1-16-7 for lactulose production. Food Science and Technology, 2008, 7: 6-10.
[10] Merico A, Capitanio D, Vigentini I, et al. How physiological and cultural conditions influence heterologous protein production in Kluyveromyces lactis. Journal of Biotechnology, 2004, 109: 139-146.
[11] 张明丽, 刘文群, 熊华, 等.产乳糖酶酵母Kluyveromyces lactis培养产酶发酵条件的研究.食品科学, 2006, 27(12): 428-432. Zhang M L, Liu W Q, Xiong H, et al. Fermentation conditions study of lactase -producing yeast Kluyveromyces lactis. Food Science and Technology, 2006, 27(12): 428-432.
[12] 徐晨, 陈历俊, 石维忱.一株乳酸克鲁维酵母(Kluyveromyces lactis)发酵条件的优化及其胞内乳糖酶性质的研究.中国食品添加剂, 2010, 6: 155-160. Xu C, Chen L J, Shi W C. Research on the optimization of fermentation conditions for Kluyveromyces lactis and properties of intracellular lactase. China Food Additives, 2010, 6:155-160.
[13] 钱卫东, 付云芳, 胡娜.Klyveromyces lactis 酵母生产乳糖酶发酵条件的研究.中国农学通报, 2012, 28(24): 288-292. Qian W D, Fu Y F, Hu N. Study on the fermentation conditions of the yeast Kluyveromyces lactis producing lactase. Chinese Agricultural Science Bulletin, 2012, 28(24): 288-292.
[14] 钱卫东, 洪奕梅.一株Kluyveromyces lactis 酵母胞内乳糖酶性质的研究.中国酿造, 2012, 3(3): 32-34. Qian W D, Hong Y M. Properties of the lactase isolated from Kluyveromyces lactis. China Brewing, 2012, 3(3): 32-34.
[15] Xie D M, Liu D H, Zhu H L, et al. Model-based optimization of temperature and feed control strategies forglycerol production by fed-batch culture of osmophilic yeast Candida krusei. Biochemical Engineering Journal, 2002, 11: 111-121.
[16] 冯镇, 张兰威, 邵美丽.温度对乳酸克鲁维酵母产重组皱胃酶的影响.黑龙江畜牧兽医, 2009, 7: 23-25. Feng Z, Zhang L W, Shao M L. Effect of temperature-shift strategy on recombinat chymosin of Kluyveromyces lactis. Heilongjiang Animal Science and Veterinary Medicine, 2009, 7: 23-25.
[17] Becerra M, Belmonte E R, Cerdan E, et al. Engineered autolytic yeast strains secreting Kluyveromyces lactis β-galactosidase for production of heterologous proteins in lactose media. Journal of Biotechnology, 2004, 109: 131-137.
[18] 董艺凝, 王霁昀, 陈海琴.耐热β-半乳糖酶在乳酸克鲁维酵母及毕赤酵母中的表达研究.食品工业科技, 2011, (05): 168-175. Dong Y N, Wang J Y, Chen H Q. Study on expression of thermostable β-galactosidase in Kluyveromyces lactis and Pichia pastoris expression system. Science and Technology of Food Industry, 2011, (05):168-175.
[19] 朱敬华, 陈海琴, 张白曦, 等.植物乳杆菌ZS2058的亚油酸异构酶基因在乳酸克鲁维酵母中的克隆表达.中国生物工程杂志, 2010, 30(4): 65-70. Zhu J H, Chen H Q, Zhang B X, et al. Cloning and expression of the linoleate isomerase gene from Lactobacillus plantarum ZS2058 in Kluyveromyces lactisGG799. China Biotechnology, 2010, 30(4): 65-70.
[20] 袁伟, 柯涛, 杜敏华, 等.牛凝乳酶原基因的合成及其在乳酸克鲁维酵母中的表达.生物工程学报, 2010, 26(9): 1281-1286. Yuan W, Ke T, Du M H, et al. Gene synthesis of the bovine prochymosin gene and high-level expression in Kluyvermyces lactis. Chinese Journal of Biotechnology, 2010, 26(9): 1281-1286.
[21] 杨晓鹏, 刘波, 巩新, 等.人可溶性肿瘤坏死因子受体Ⅱ与 IgG Fc 融合蛋白在乳酸克鲁维酵母菌中的表达及产物分析. 生物技术通讯, 2011, 2(1): 11-14. Yang X P, Liu B, Gong X, et al. Expression of human sTNFRⅡ-IgGFc in Kluyveromyces lactis.Letters in Biotechnology, 2011, 2(1):11-14.
[22] Liu B, Gong X, Chang S H, et al. Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis. Journal of Biotechnology, 2009, 143(2): 95-102.
[23] Skelte G A, Siew K L, Henning K. Effect of pH at heat treatment on the hydrolysis of κ-casein and the gelation of skim milk by chymosin. LWT -Food Science and Technology, 2007, 40(1): 99-106.
[24] van Ooyen A J, Dekker P, Huang M, et al. Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res, 2006, 6: 381-392.
[25] 冯镇, 张兰威.小牛凝乳酶原基因在乳酸克鲁维酵母中的表达及遗传稳定性研究.食品科学, 2008, 29(7): 297-302. Feng Z, Zhang L W. Study on expression of prochymosin in Kluyveromyces lactis and genetic stability.Food Science, 2008, 29(7): 297-302.
[26] Dominguer L, Teixeira J A, Penttila M, et al. Construction of a flocculent Saccharomyces cerevisiae strain secreting high levels of Aspergillus niger β-galactosidase. Appl Microbiol Biotechnol, 2002, 58: 645-650.
[27] Rodriguez A P, Leiro R L, Cerdan M E, et al. Kluyveromyces lactis β-galactosidase crystallization using full-factorial experimental design. Journal of Molecular Catalysis B:2008, Enzymatic 52-53, 178-182.
[28] 马春丽.乳糖酶及其在乳品工业中的应用.食品研究与开发, 2003, 24(5): 62-65. Ma C L. The lactase and its applications in the dairy industry. Food Research and Development, 2003, 24(5): 62-65.
[29] 张萃荟.适合乳果糖制备的β-半乳糖苷酶高产株的筛选及产酶条件的优化.无锡:江南大学, 食品学院, 2008. Zhang H C.Screening of high-β-galactosidase-yield strain for lactulose production and optimization of fermentation condition.Wuxi:Jiangnan University, College of Food Science, 2008.
[30] Alteriis E D, Silvestro G, Poletto M, et al. Heterologous glucoamylase production with immobilized Kluyveromyces lactis cells in a fluidised bed reactor operating as a two-(liquid-solid) or a three-(gas-liquid-solid) phases system. Process Biochemistry, 2006, 41: 2352-2356.
[31] Alteriis E D, Silvestro G, Poletto M, et al. Kluyveromyces lactis cells entrapped in Ca-alginate beads for the continuous production of a heterologous glucoamylase. Journal of Biotechnology, 2004, 109: 83-92.
[1] WU Yong-hong, ZHANG Cheng-gang. Current Progress on the HIV-1 TAT Protein Transduction Peptide[J]. China Biotechnology, 2010, 30(10): 66-73.
[2] . Current Progress on the HIV-1 TAT Protein Transduction Peptide[J]. China Biotechnology, 2010, 30(10): 0-0.
[3] . [J]. China Biotechnology, 2006, 26(0): 170-172.