Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (1): 41-46    DOI:
    
Optimization of Genetic Transformation Conditions in Pogonatherum paniceum Mediated by Agrobactrium tumefaciens
LI Mei-yu, LI Rui, YU Min, WANG Sheng-hua, CHEN Fang
Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
Download: HTML   PDF(695KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  A perennial herbaceous plant, Pogonatherum paniceum, plays an important role inecological restoration and landscape construction. To establish highly efficient transformation system, factors which influenced transformation including Agrobacterium concentration, infection time, concentration of acetosyringone and glucose, and co-culture time were studied with the mature embryo callus of Pogonatherum paniceum based on the variance of GUS (β-glucuronidase) trsnsient expression rate. The results showed that the transformation efficiency was improved with Agrobacterium concentration of OD600=0.6, incubation for 10 min, co-culture time for 5d. Acetosyringone with the concentration of 20mg/L and 10g/L glucose could significantly enhance the transformation rate. Utilizing this system, more than 57% kanamycin resistance selection efficiency was obtained. GUS gene has successfully integrated into the plant genome by GUS and PCR detection. The establishment of this transformation system lays a foundation for genetic modified and study of functional genes of Pogonatherum paniceum.

Key wordsPogonatherum paniceum      Callus      Agrobactrium tumefaciens      Transformation      GUS     
Received: 28 May 2012      Published: 25 January 2013
ZTFLH:  Q311  
Cite this article:

LI Mei-yu, LI Rui, YU Min, WANG Sheng-hua, CHEN Fang. Optimization of Genetic Transformation Conditions in Pogonatherum paniceum Mediated by Agrobactrium tumefaciens. China Biotechnology, 2013, 33(1): 41-46.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I1/41

[1] 王文国, 李锐, 王胜华, 等. 基于GIS的水土保持植物金发草的适生区与生境分析. 中国水土保持, 2010, (6): 33-35. Wang W G, Li R, Wang SH H, et al. GIS-Based analysis on suitable distribution area and habitat of Pogonatherum paniceum, a plant for soil and water conservation. Soil and Water Conservation in China, 2010, (6): 33-35.
[2] 陈红, 王海洋. 不同基质环境条件下金发草的种群结构差异. 西南农业大学学报(自然科学版), 2004, (4): 448-451. Chen H, Wang H Y. Differentiation of population structure of Pogonatherum paniceum on different substrates. Journal of Southwest Agricultural University(Natural Science), 2004, 26(4): 448-451.
[3] 马丹炜, 王胜华, 罗通, 等. 环境因子对岩生植物金发草遗传多样性的影响. 中山大学学报(自然科学版), 2006, 45(2): 73-77. Ma D W, Wang SH H, Luo T, et al. Effects of environmental factors on the genetic diversity of Pogonatherum paniceum, Acta Scientiarum Naturalium Universitaties Sunyatseni, 2006, 45(2): 73-77.
[4] 王海洋,彭丽,李绍才,等. 岩生植物金发草生长特征研究. 应用生态学报,2005, (8): 1432-1436. Wang H Y, Peng L, Li SH C, et al. Growth characteristics of rock plant Pogonatherum paniceum. Chin J Appl Ecol, 2005, 16(8): 1432.
[5] Gao C X, Liu J X, Nielsen K K. Agrobacterium-mediated transformation of meadow fescue (Festuca pratensis Huds.). Plant Cell Rep, 2009, 28: 1431-1437.
[6] Ge Y X, Norton T, Wang Z Y. Transgenic zoysiagrass (zoysia japonica) plants obtained by Agrobacterium-mediated transformation. Plant Cell Rep, 2006, 25: 792-798.
[7] 陈章良. 植物基因与分子操作. 北京:北京出版社, 1995, 191-230. Chen ZH L. Plant genes and molecular manipulation. Beijing: Beijing Press, 1995, 191-230.
[8] Sergio G N, Isabel A, Lucas del C A, et al. Agrobacterium tumefaciens-mediated transformation of the aromatic shrub Lavandula latifolia. Mol Breeding, 2000, 6: 539-552.
[9] Wang Z Y, Ge Y. Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea Schreb.). Plant Physiol, 2005, 162: 103-113.
[10] Seo M S, Bae C H, Choi D O, et al. Investigation of transformation efficiency of rices using Agrobacterium Tumefaciens and high transformation of GPAT (glycerol-3-phosphate aeyltransferase) generelative to chilling tolerance. Korean J Plant Biotechnlogy, 2002, 29: 85-92.
[11] 魏开发, 刘逸萍, 林子英, 等. 农杆菌介导单子叶植物遗传转化问题与对策. 植物学通报, 2008, 25(4): 491-496. Wei K F, Liu Y P, Lin Z Y, et al. Problems and solutions in Agrobacterium tumefaciens-mediated genetic transformation of Monocotyledons. Chin Bull Bot, 2008, 25(4): 491-496.
[12] Wang W G, Zhao X G, Zhuang G Q, et al. Simple hormonal regulation of somatic embryogenesis and/or shoot organogenesis in caryopsis cultures of Pogonatherum paniceum (Poaceae). Plant Cell Tiss Organ Cult, 2008, 95: 57-67.
[13] Wang W G, Wang S H, Wu X A, et al. High frequency plantlet regeneration from callus and artificial seed production of rock plant Pogonatherum paniceum (Lam.) Hack. (Poaceae). Sci Hortic, 2007, 113: 196-201.
[14] Jefferson R A. DNA transformation of Caenorhabditis elegans: development and application of a new gene fusion system. University of Colorado, USA: Boulder CO, 1985.
[15] Zhao S Z, Ruan Y, Sun H Z, et al. Highly efficient Agrobacterium-based transformation system for callus cells of the C3 halophyte Suaeda salsa. Acta Physiol Plant, 2008, 30: 729-736.
[16] Park S H, Lee B M, Sslas M G, et al. Shorter T-DNA or additional virulence genes improve Agrobactrium-mediated transformation. Theor Appl Genet, 2000, 101: 1015-1020.
[17] Liao C H, You S J, Prasad V, et al. Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep, 2003, 21: 993-998.
[18] Zhu Q, Wu F T, Ding F, et al. Agrobacterium-mediated transformation of Dioscorea zingiberensis wright, an important pharmaceutical crop, Plant Cell Tiss Organ Cult, 2009, 96: 317-324.
[19] Amoah B K, Wu H, Sparks C, et al. Factors influencing Agrobacterium-mediated trasient expression of uidA in wheat inflorescence tissue. J Exp Bot, 2001, 52:1135-1142.
[20] McLean B G, Greene E A, Zambryski PC. Mutants of Agrobacterium VirA that activate vir gene expression in the absence of the inducer acetosyringone. J Biol Chem, 1994, 269(4): 2645-2651.
[21] Monique F, van Wordragen, Hans J M Dons. Agrobacterium tumefaciens-mediated transformation of recalcitrant crops. Plant Mol Biol Rep, 1992, 10(1):12-36.
[22] Ashok K S, Dirk B, Horst L. Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.). Plant Sci, 2007, 172: 281-290.
[23] Hansen G, Das A, Chilton M D. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA, 1994, 91: 7603-7607.
[24] Smith R H, Hood E E. Review and interpretation: Agrobacterium tumefaciens transformation of monocots. Crop Sci, 1995, 35(2): 301?309.
[25] 董喜才, 杜建中, 王安乐, 等. 乙酰丁香酮在植物转基因研究中的作用. 中国农学通报, 2011, 27(5): 292-299. Dong X C, Du J ZH, Wang A L, et al. Role of Acetosyringone in plants transformation researcher. Chinese Agriculture Science Bulletin, 2011, 27(5): 292-299.
[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] WANG Yi-han,LI Hai-yan,XUE Yong-chang. The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase[J]. China Biotechnology, 2021, 41(4): 74-80.
[3] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[4] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[5] MENG Xiao-lin,PANG Xi-ming,WANG Jie. Agrobacterium-mediated Transformation and the Functions of Pks in Marine-derived Penicillium oxalicum[J]. China Biotechnology, 2020, 40(9): 11-17.
[6] YANG Li,SHI Xiao-yu,LI Wen-lei,LI Jian,XU Han-mei. Optimization of Electroporation Conditions in Construction of Phage Display Antibody Library[J]. China Biotechnology, 2020, 40(4): 42-48.
[7] Yue-lei FAN,Jiao LU,Da-ming CHEN,Kai-yun MAO. Strategies for Stem Cell Patent Evaluation and Patent Transfer and Transformation[J]. China Biotechnology, 2019, 39(1): 99-106.
[8] Bo-wen CHEN,Hai-long LIU,Yu-fei XIAO,Zi-hai QIN,Ye ZHANG,Xiao-ning ZHANG. Directional Regulation of Lignin Monomer Synthesis in Tobacco by Using COMT Gene and CCoAOMT Gene of Eucalyptus urophylla[J]. China Biotechnology, 2018, 38(3): 24-32.
[9] Zheng-san ZUO,Dong-sheng GUO,Xiao-jun JI,Ping SONG,He HUANG. Polyunsaturated Fatty Acids and Their Derivatives in the Intestinal Tract:a Review[J]. China Biotechnology, 2018, 38(11): 66-75.
[10] Ting AN,Jing JI,Yu-rong WANG,Zhi-gang MA,Gang WANG,Qian LI,Dan YANG,Song-hao ZHANG. Analysis of the Transformation Efficiency and Induced Differentiation of Lilium brownii Scales[J]. China Biotechnology, 2018, 38(1): 25-31.
[11] XIA Hui, LIU Lei, WANG Xiu, SHEN Yan-qiu, GUO Yu-lun, LIANG Dong. Research on Stress-inducible Expression Characteristics of Sorbitol-6- phosphate Dehydrogenase Promoter from Apple[J]. China Biotechnology, 2017, 37(6): 50-55.
[12] SUN Dan, ZHANG Min, XIE Chang-rui, GUO Xiao-wei, XU He-han, GAO Hong-tao, LI Xiao-wei, SUN Tian-xu, LI Hai-yan. Establishment of Genetic Transformation System of Cordyceps militaris using PEG Mediated Method[J]. China Biotechnology, 2017, 37(4): 76-82.
[13] YAO Ren-hui, DONG Zhuo, LI Hui. Biotransformation of Androst-4-en-3,17-dione by Gibberella intermedia C2[J]. China Biotechnology, 2017, 37(3): 73-77.
[14] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[15] ZENG Si-yu, SHI Tian-qiong, SHI Kun, REN Lu-jing, HUANG He, JI Xiao-jun. Establishment and Application of Genetic Motification System for Mortierella alpina[J]. China Biotechnology, 2016, 36(7): 112-116.