Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (1): 114-121    DOI:
    
Advances in the Study of non-classical Inclusion Bodies
LUO Li1, HE Yong-zhi2, ZHANG Yong-xia2, WANG Ming-rong2
1. Sichuan Industrial Institute of Antibiotics, China National Pharmaceutical Corp., Chengdu 610052, China;
2. Chengdu Institute of Biological Products Co., Ltd., Chengdu 610023, China
Download: HTML   PDF(615KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Expression of heterologous genes in prokaryotic cell is a fast, simple and cheap way to produce large amount of target proteins, especially recombinant protein drugs. However, overexpression of recombinant protein often leads to the formation of aggregates called inclusion bodies(IBs). In the past,IBs were recognized as deposits of misfolded and inactive proteins, and denaturation/renaturantion steps is necessary for isolation of biologically active protein. Until recently, IBs have been described as biological activity, which can be extracted from non-denaturing conditions, named non-classical Inclusion bodies(ncIBs). This review which focuses on the definition, mechanism and extraction of ncIBs is expected to provide valuable references for the research and exploit of recombination protein productions.

Key wordsnon-classical Inclusion bodies(ncIBs)      non-denature      Bioactivity     
Received: 08 October 2012      Published: 25 January 2013
ZTFLH:  Q816  
Cite this article:

LUO Li, HE Yong-zhi, ZHANG Yong-xia, WANG Ming-rong. Advances in the Study of non-classical Inclusion Bodies. China Biotechnology, 2013, 33(1): 114-121.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I1/114

[1] Jevševar S, Gaberc-Porekar V, Fonda I,et al.Production of nonclassical inclusion bodies from which correctly folded protein can be extracted.Biotechnol Progr, 2005, 21(2): 632-639.
[2] García-Fruitós E, González-Montalbán N, Morell M,et al.Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins.MicrobvCell Fact, 2005, 4(1): 27-32.
[3] Umetsu M, Tsumoto K, Nittaa S,et al.Nondenaturing solubilization of beta2 microglobulin from inclusion bodies by L-arginine.Biochem Bioph Res Co, 2005, 328(1): 189-197.
[4] Peternel Š, Bele M, Gaberc-Porekar V,et al.Nonclassical inclusion bodies in Escherichia coli.Microb Cell Fact, 2006, 5: 23-24.
[5] García-Fruitós E, Arís A, Villaverde A.Localization of functional polypeptides in bacterial inclusion bodies.Appl Environ Microb, 2007, 73(1): 289-294.
[6] Peternel Š, Grdadolnik J, Gaberc-Porekar V,et al.Engineering inclusion bodies for non denaturing extraction of functional proteins.Microb Cell Fact 2008, 7(1): 34-42.
[7] DM W, NH G.The formation of biologically active beta-galactosidase inclusion bodies in Escherichia coli.Australian Journal of Biotechnology, 1989, 3(1): 28-32.
[8] Tokatlidis K, Dhurjati P, Millet J,et al.High activity of inclusion bodies formed in Ecoli overproducing Clostridium thermocellum endoglucanase D.Febs Lett, 1991, 282(1): 205-208.
[9] González-Montalbán N, García-Fruitós E, Villaverde A.Recombinant protein solubility——does more mean better?.Nat Biotechnol, 2007, 25(7): 718-720.
[10] Kopito R R.Aggresomes,inclusion bodies and protein aggregation.Trends Cell Biol, 2000, 10(12): 524-530.
[11] Peternel Š, Komel R.Active protein aggregates produced in Escherichia coli. Int.J.Mol.Sci, 2011, 12(11): 8275-8287.
[12] García-Fruitós E, Vazquez E, Diez-Gil C,et al.Bacterial inclusion bodies:making gold from waste.Cell Press, 2012, 30(2): 65-70.
[13] Peternel Š, Bele M, Gaberc-Porekar V,et al.Inclusion bodies contraction with implications in biotechnology.Acta Chim Slov, 2008: 608-612.
[14] A JFK, Hartley DL.Formation of recombinant protein inclusion bodies in Escherichia coli.Trends Biotechnol, 1988, 6(5): 95-101.
[15] Vera A, N NGL, S AA,et al.The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures.Biotechnol Bioeng, 2007, 96(6): 1101-1106.
[16] Peternel Š, Gaberc-Porekar V, Komel R.Bacterial growth conditions affect quality of GFP expressed inside inclusion bodies.Acta Chim Slov, 2009, 56: 860-867.
[17] Sans C, Garcia-Fruitos E, Ferraz RM,et al.Inclusion bodies of fuculose-1-phosphate aldolase as stable and reusable biocatalysts.Biotechnol Progr, 2012, 28(2): 421-427.
[18] Rodríguez-Carmona E, Cano-Garrido O, Seras-Franzoso J,et al.Isolation of cell-free bacterial inclusion bodies.Microb Cell Fact, 2010, 9(1): 71-79.
[19] Arié J, Miot M, Sassoon N,et al.Formation of active inclusion bodies in the periplasm of Escherichia coli.Mol Microbiol, 2006, 62(2): 427-437.
[20] Wu W, Xing L, Zhou B,et al.Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli.Microb Cell Fact, 2011, 10(1): 9-16.
[21] Zhou B, Xing L, Wu W,et al.Small surfactant-like peptide can drive soluble proteins into active aggregates.Microb Cell Fact 2012, 11(1): 10-17.
[22] Nahalka J, Nidetzky B.Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilis D-amino acid oxidase as insoluble enzyme aggregates.Biotechnol Bioeng, 2007, 97(3): 454-461.
[23] Nahalka J.Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to alpha-D-glucose-1-phosphate.J Ind Microbiol Biotechnol, 2008, 35(4): 219-223.
[24] Nahalka J, Vikartovska A, Hrabarova E.A crosslinked inclusion body process for sialic acid synthesis.J Biotechnol, 2008, 134(1-2): 146-153.
[25] Peternel Š, Komel R.Isolation of biologically active nanomaterial(inclusion bodies) from bacterial cells.Microb Cell Fact, 2010, 9(1): 66-81.
[26] Peternel S.Bacterial cell disruption: a crucial step in protein production.New Biotechnology, 2011, 00(00): xx-xx.
[27] Tsumoto K, Umetsu M, Kumagai I,et al.Solubilization of active green fluorescent protein from insoluble particles by guanidine and arginine.Biochem Biophys Res Commun, 2003, 312(4): 1383-1386.
[28] Oberg K, Chrunyk BA, Wetzel R,et al.Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR.Biochemistry-Us, 1994, 33(9): 2628-2634.
[29] Fine M, Amuly R, Sandowski Y,et al.Recombinant gilthead seabream (Sparus aurata) insulin-like growth factor-I: subcloning, expression in Escherichia coli, purification and characterization.J Endocrinol, 1997, 153(1): 139-150.
[30] Paduel A, Chapnik-Cohen N, Gertler A,et al.Preparation and Characterization of Recombinant Dolphin Fish(Coryphaena hippurus) Growth Hormone.Protein Expres Purif, 1999, 16(3): 417-423.
[31] Carrio M M, Cubarsib R, Villaverde A.Fine architecture of bacterial inclusion bodies.Febs Lett, 2000, 471(1): 7-11.
[32] Kuczynska-Wisnik D, Zurawa-Janicka D, Narkiewicz J,et al.Escherichia coli small heat shock proteins IbpA/B enhance activity of enzymes sequestered in inclusion bodies.Acta Biochim Pol, 2004, 51(4): 925-931.
[33] Ami D, Natalello A, Gatti-Lafranconi P,et al.Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy.Febs Lett, 2005, 579(16): 3433-3436.
[34] Solomon G, Niv-Spector L, Gonen-Berger D,et al.Preparation of leptin antagonists by site-directed mutagenesis of human,ovine,rat,and mouse leptin's site III.Ann Ny Acad Sci, 2006, 1091: 531-539.
[35] Nahalka J, Gemeiner P, Bucko M,et al.Bioenergy beads:a tool for regeneration of ATP/NTP in biocatalytic synthesis.Artif Cells Blood Substit and Biotechnol, 2006, 34(5): 515-521.
[36] Peternel Š, Jevševar S, Bele M,et al.New properties of inclusion bodies with implications for biotechnology.Biotechnol Appl Biochem, 2008, 49(Pt 4): 239-246.
[37] Tsuji I, Mastui H, Ito T,et al.L-cysteine-enhanced renaturation of bioactive soluble tumor necrosis factor ligand family member LIGHT from inclusion bodies in Escherichia coli.Protein Expres Purif, 2011, 80(2): 239-245.
[38] Carvajal P, Gibert J, Campos N,et al.Activity of maize transglutaminase overexpressed in Escherichia coli inclusion bodies:an alternative to protein refolding.Biotechnol Progr, 2011, 27(1): 232-240.
[39] Li M, Fan H, Liu J H,et al.High pH solubilization and chromatography-based renaturation and purification of recombinant human granulocyte colony-stimulating factor from inclusion bodies.Appl Biochem Biotech, 2012, 166(5): 1264-1274.
[40] Lu S C, Lin S C.Recovery of active N-acetyl-d-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers.Enzyme Microb Tech, 2012, 50(1): 65-70.
[41] Liovic M, Ozir M, Zavec A B,et al.Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells.Microb Cell Fact, 2012, 11: 67-80.
[42] Singh S M, Sharma A, Upadhyay A K,et al.Solubilization of inclusion body proteins using n-propanol and its refolding into bioactive form.Protein Expres Purif, 2012, 81(1): 75-82.
[43] Walsh D J, Noble G P, Piro J R,et al.Non-reducing alkaline solubilization and rapid on-column refolding of recombinant prion protein.Prep Biochem and Biotechnol, 2012, 42(1): 77-86.
[44] Francis V G, Majeed M A, Gummadi S N.Recovery of functionally active recombinant human phospholipid scramblase 1 from inclusion bodies using N-lauroyl sarcosine.J Ind Microbiol Biotechnol, 2012, 39(7): 1041-1048.
[45] Nahalka J, Dib I, Nidetzky B.Encapsulation of Trigonopsis variabilis D-amino acid oxidase and fast comparison of the operational stabilities of free and immobilized preparations of the enzyme.Biotechnol Bioeng, 2008, 99(2): 251-260.
[1] Min-hua XU,Jing-jing ZHANG,Xiao-bao JIN,Xia-bo LI,Yan WANG,Yan MA. Cloning\Expression and Bioactivity of the Chitinase Gene ChiA from the Endophytes of Periplaneta americana[J]. China Biotechnology, 2019, 39(1): 31-37.
[2] Jian-xue TANG,Yong-le XIAO,Jun-jie PENG,Shi-ji ZHAO,Xiao-ping WAN,Rong GAO. Expression of Fusion Antibacterial Peptide in Recombinant Pichia pastoris and Its Bioactivity In Vitro[J]. China Biotechnology, 2018, 38(6): 9-16.
[3] WANG Lan, XU Gang-ling, GAO Kai, WANG Jun-zhi. Progress in Research and Development of Bioactivity Determination of Antibody-based Therapeutics[J]. China Biotechnology, 2015, 35(6): 101-108.
[4] SUN Jing, WANG Bin, DUAN Zhi-qing, HU Ning-zhu, LI Jian-fang, LI Yan-han, HU Yun-zhang. Expression, Purification and Bioactivity Identification of Recombinant Human Leukemia Inhibitory Factor (hLIF) Fusion Protein[J]. China Biotechnology, 2013, 33(5): 50-55.
[5] LU Qing-peng, XU Zhen-hong, SI Jin-song, DOU Wen-fang. The Disruption of STE13 Gene in Pichia pastoris Improves the Expression and Bioactivity of GGH[J]. China Biotechnology, 2013, 33(4): 28-33.
[6] TANG Xi-xiang, YI Zhi-wei, LI Ning, MA Qun, LI Hui, QIN Dan, XIAO Xiang. Bioactivity Screening of Fermentation Crude Extracts from Deep Sea Metagenomic Library Clones[J]. China Biotechnology, 2011, 31(06): 58-63.
[7] LI Zhuang-lin, YAO Xue-jing, YUAN Gui-yong. Expression, Purification and Bioactivity Research of Human Angiostatin Kringles 1-3[J]. China Biotechnology, 2011, 31(01): 24-28.
[8] . Anticancer Agents from Endophytic Fungi[J]. China Biotechnology, 2009, 29(01): 93-104.
[9] . Expression and Purification of Human Augmenter of Liver Regeneration in Pichia Pastoris and Evaluation of Its Bioactivity in Vitro[J]. China Biotechnology, 2007, 27(6): 22-26.
[10] . A primary study on antitumor activity of deep-sea microorganisms isolated from the tropical Pacific Ocean[J]. China Biotechnology, 2007, 27(10): 81-86.