Effects of Different Nitrogen Nutrition Level on the Growth and Photosynthetic Physiology of Odontella aurita

WANG Lu-yao, SANG Min, LI Ai-fen, ZHANG Cheng-wu

China Biotechnology ›› 2012, Vol. 32 ›› Issue (6) : 48-56.

PDF(1124 KB)
PDF(1124 KB)
China Biotechnology ›› 2012, Vol. 32 ›› Issue (6) : 48-56.
RESEARCH PAPERS

Effects of Different Nitrogen Nutrition Level on the Growth and Photosynthetic Physiology of Odontella aurita

  • WANG Lu-yao, SANG Min, LI Ai-fen, ZHANG Cheng-wu
Author information +
History +

Abstract

In order to analysis the effects of different nitrogen nutrition level on the growth and photosynthetic physiology of Odontella aurita, diatoms were cultured under different nitrogen conditions(17.6 mmol/L N, 8.8mmol/L N, 5.87 mmol/L N, 0 mmol/L N), using 6cm columnar light biological reactor. The results showed that the algae of different nitrogen groups reached the maximum growth at different time. In the early of culturing, nitrogen limitation(5.87mmol/L N, 8.8mmol/L N) promoted the growth of Odontella aurita comparing with the control, while nitrogen starvation significantly inhibited the growth of the algae(P<0.05).The carbohydrate content increased significantly (P<0.05) under nitrogen limitation conditon, while total protein content decreased significantly (P<0.05).The content of chlorophyll a, c, total carotenoids of Odontella aurit are positively related with nitrogen nutrition levels of culture medium. The maximum photosynthetic oxygen release rate Pm decreased with nitrogen concentration, the respiratory rate of Rd presented the opposite tendency. The maximum efficiency of light energy conversion of PSⅡ (Fv/Fm), the actual energy conversion efficiency(Yield), potential activity(Fv/Fo) and relative electron transfer efficiency (ETR) decreased significantly with the nitrogen limitation. Illuminating that algal cells of apparent photosynthetic physiological status are directly related to the level of nitrogen nutrition.

Key words

Odontella aurita / Nitrate limitation / Chlorophyll fluorescence parameters / Growth

Cite this article

Download Citations
WANG Lu-yao, SANG Min, LI Ai-fen, ZHANG Cheng-wu. Effects of Different Nitrogen Nutrition Level on the Growth and Photosynthetic Physiology of Odontella aurita[J]. China Biotechnology, 2012, 32(6): 48-56

References

[1] Beardall J, Young E, Roberts S. Approaches for determining phytoplankton nutrient limitation. Aquat Sci, 2001, 63: 44-69.
[2] Dugdale R C. Nutrient limitation in the sea. Dynamics, identification and significance. Limnol Oceanogr, 1967, 12: 685-955.
[3] Geider R G, Roche J L, Greene R M, et al. Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation. J Phycol, 1993, 29: 755-766.
[4] Young E, Beardall J. Rapid ammonium and nitrate-induced perturbations to chl a flurescence in nitrogen-stressed Dunaliella tertiolecata(Chlorophyta). J Phycol, 2003, 39: 332-342.
[5] Ikeda Y, Komura M, Watanabe M, et al. Photosystem I complexes associated with fucoxanthin-chlorophyll-binding proteins from a marine centric diatom, Chaetoceros gracilis. Biochinmica et Biophysica Acta, 2008, 1777(4):351-361.
[6] Berges J A, Falkowski P G. Physiological stress and cell death in marine phytoplankton: Induction of proteases in response to nitrogen or light limitation. Limnol Oceanogr, 1998, 43(1): 129-135.
[7] 胡晗华,石岩峻,丛威,等. 不同氮磷水平下中肋骨条藻对营养盐的吸收及光合特性. 应用与环境生物学报,2004, 10 (6): 735-739. Hu H H, Shi Y J, Cong W, et al. Photosynthetic characteristics and nutrient absorptin of Skeletonema costatum at different nitrogen and phosphorus levels. Chin J Appl Environ Biol, 2004, 10 (6): 735-739.
[8] 梁英,金月梅,田传远. 氮磷浓度对绿色巴夫藻生长及叶绿素荧光参数的影响. 海洋湖沼通报,2008, 1: 120-128. Liang Y, Jing Y M, Tian C Y. Effects of different nitrogen and phosphorus concentrations on the growth and chlorophyll fluorescence parameters of Pavloca viridis. Transactions of Oceanology and Limnology, 2008, 1: 120-128.
[9] Toume K, Ishibashi M. 5a, 8a-Epidioxysterol sulfate from a diatom Odontella aurita. Phytochemistry, 2002, 61: 359-360.
[10] Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol, 2004, 65: 635-648.
[11] Brand J P. Simultaneous culture in pilot tanks of the macroalga Chondrus crispus (Gigartinaceae) and the microalga Odontella aurita(Eupodiscaceae) producing EPA. In: Gal Y L, Feuga A M. Marine Microorganisms for Industry, Plenum Press, 1998. 39-47.
[12] Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz, 1975, 167 (19): 1-194.
[13] 李东侠,丛威,蔡昭铃,等. 铁胁迫诱导的赤潮异弯藻细胞生化组成变化.应用生态学报,2003, 14 (7): 1185-1187. Li D X, Cong W, Cai S L, et al. Induction of biochemical composition in Heterosigma akashiwo under Fe stress. Chinese Journal of Applied Ecology, 2003, 14 (7): 1185-1187.
[14] 梁英,冯力霞,田传远,等. 高温胁迫对盐藻和塔胞藻叶绿素荧光动力学的影响. 中国水产科学,2007, 14(6): 961-968. Liang Y, Feng L X, Tian C Y, et al. Effects of high temperature stress on chlorophyll fluorescence kinetics of Dunaliella salina and Pyramimonas sp. Journal of Fishery Sciences of China, 2007, 14(6): 961-968.
[15] 王帅,梁英,冯力霞,等. 重金属胁迫对杜氏盐藻生长及叶绿素荧光特性的影响.海洋科学,2010, 34 (10): 38-48. Wang S, Liang Y, Feng L X, et al. Effects of heavy metal exposure on the growth and chlorophyll fluorescence of Dunaliella salina. Marine Science, 2010, 34 (10): 38-48.
[16] Henley W J. Measurement and interpretation of photosynthetic light response curves in alga in the context of photoinhibition and diel changes. J Phycol, 1993, 29(8): 729-739.
[17] Khozin-Goldberg I,Shrestha P,Cohen Z.Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa.J Biochem Biophy Acta,2005,1738(1):63-71.
[18] Dubios M, Gillies K A, Hamilton J K, et al. Colorimetric method for the determination of sugars and related subtacnces. Anal Chem, 1956, 28: 350-356.
[19] Guerrini F, Cangini M, Boni L. Metabolic responses of the diatiom Achnanthes brevipes (Bacillariophyceae) to nutrient limitation. J Phycol, 2000, 36: 882-890.
[20] 尹翠玲,梁英,冯力霞,等. 氮浓度对盐生杜氏藻和纤细角毛藻叶绿素荧光特性及生长的影响. 海洋湖沼通报,2007, 1: 101-109. Ying C L, Liang Y, Feng L X, et al. Effects of different nitrogen concentrations on the chlorophyll fluorescence and growth of Dunaliella salina and Chaetoceros gracilis. Transactions of Oceanology and Limnology, 2007, 1: 101-109.
[21] Victoria H W, Randor R, Robert E J, et al. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell, 2010, 9(8): 1251-1261.
[22] Young E B, Beardall J. Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen and recovery cycle. J Phycol, 2000, 39: 897-905.
[23] 梁英,冯力霞,田传远,等. 盐胁迫对塔胞藻生长及叶绿素荧光动力学的影响. 中国海洋大学学报,2006, 36 (5): 726-732. Liang Y, Feng L X, Tian C Y, et al. Effects of salt stress on the growth and chlorophyll fluorescence of Pyramidomonas sp. Periodical of Ocean University of China, 2006, 36 (5): 726-732.
[24] 周蕴薇,刘艳萍,戴思兰. 用叶绿素荧光分析技术鉴定植物抗寒性的剖析. 植物生理学通讯,2006, 42(5): 945-950. Zhou Y W, Liu Y P, Dai S L. Identification of cold resistant plants by chlorophyll fluorescence analysis technique. Plant Physiology Communications, 2006, 42(5): 945-950.
[25] 张丽霞,朱涛,张雅婷,等. 不同光强对铜绿微囊藻生长及叶绿素荧光动力学的影响. 信阳师范学报,2009, 22 (1): 63-65. Zhang L X, Zhu T, Zhang Y T, et al. The growth and chlorophyll fluorescence dynamics change of Microcystic aerugiuosa treated with different light. Journal of Xinyang Normal University, 2009, 22 (1): 63-65.
[26] Dortch Q. Effect of growth conditions on the accumulation of internal nitrate,ammonium amino acids and protein in three marine diatoms. J Exp Mar Bio1 Eco1, 1982, 61: 243-254.
[27] Fabregas J, Abalde J, Herrero C. Biochemical conposition and grewth of the marine microalgae Dunaliella tertiolecta(Butcher)withdifferent ammonium nitrogen concentrations as chloride, sulphate, nitrate and carbonate. Aquaculture, 1989, 83: 289-304.
[28] Fabregas J, Herrero C, Cabezas B, et a1. Biomass production and biochemical composition in mas cultures of the marine microalga Isochrysis galbana Parke at varying nutrient concentrations. Aquaculture, 1986, 53: 101-113.
[29] Suen Y, Hubbard J S, Holzer G, et a1. Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes. Phyco1, 1987, 23:289-296.
[30] 石娟,潘克厚. 不同培养条件对微藻总脂含量和脂肪酸组成的影响. 海洋水产研究,2004, 25(6): 79-85. Shi J, Pan K H. Effects of different culture conditions and growth phases on lipid of microalga. Marine Fisheries Research, 2004, 25(6): 79-85.
[31] 欧阳峥嵘,温小斌,耿亚红,等. 光照强度、温度、pH、盐度对小球藻(Chbrella)光合作用的影响. 武汉植物学研究,2010, 28 (1): 49-55. OuYang Z R, Wen X B, Geng Y H, et al. The effects of light intensities, temperatures, pH and salinities on photosynthesis of Chlorella. Journal of Wuhan Botanical Research, 2010, 28 (1): 49-55.
[32] Silva A F, Ourenco S O, Chaloub R M. Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquat Bot, 2009, 91: 291-297.
[33] 石岩骏. 赤潮藻对营养盐的吸收及生长和相关特性的研究. 北京:北京化工大学博士研究生学位论文, 2004. Shi Y J. The nutrient availability,growth and related characteristics of red tide algae. Beijing University of Chemical Doctor Graduate Student Degree Thesis, 2004.
[34] Plumley F G, Schmidt G W. Nitrogen-dependent regulation of photosynthetic gene expression. Proc Natl Acad Sci USA, 1989, 86(8): 2678-2682.
[35] Billi D, Caiola M G. Effects of nitrogen limitation and starvation on Chroococcidiopsis sp. (Chroococcales). New Phytol, 1996, 133: 563-571.
PDF(1124 KB)

Accesses

Citation

Detail

Sections
Recommended

/