Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (11): 132-136    DOI:
    
Research Progress on Pentose Metabolic Engineered Corynebacterium glutamicum
YE Jing1,2, XU Jing-liang1, XIAO Bo1, YUAN Zhen-hong1, XU Hui-juan1, YANG Liu1, LI Xie-kun1
1. Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
2. School of Environment Science and Engineering, Huazhong Universty of Science and Technology, Wuhan 430074, China
Download: HTML   PDF(375KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  To improve the economic benefits of lignocellulosic biorefinery with Corynebacterium glutamicum, one of the critical pathway is to efficiently utilize pentose from hemicellulose. Corynebacterium glutamicum is widely used in amino acid and nucleotide industrial production. It can produce significant amount of amino acids even at steady phase, and can withstand growth inhibitors like furfurals, 5-hydroxymethylfurfural, which make it more suitable as a potent lignocellulose catalytic conversion biocatalyst. Research progress and strategy about xylose and arabinose utilizing genetic engineering C. glutamicum construction is reviewed, and the future research direction on optimization of pentose metabolic capabilities are also proposed.

Key wordsCorynebacterium glutamicum      Pentose utilization      Lignocellulose      Metabolic engineering     
Received: 11 July 2012      Published: 25 November 2012
ZTFLH:  Q768  
Cite this article:

YE Jing, XU Jing-liang, XIAO Bo, YUAN Zhen-hong, XU Hui-juan, YANG Liu, LI Xie-kun. Research Progress on Pentose Metabolic Engineered Corynebacterium glutamicum. China Biotechnology, 2012, 32(11): 132-136.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I11/132

[1] Wyman C E. Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnology Progress, 2003, 19(2): 254-262.
[2] Jeffries T. Utilization of xylose by bacteria, yeasts, and fungi. Pentoses and Lignin, 1983.1-32.
[3] McMillan J D Boynton B L. Arabinose utilization by xylose-fermenting yeasts and fungi. Applied Biochemistry and Biotechnology, 1994, 45(1): 569-584.
[4] Deutscher J. The mechanisms of carbon catabolite repression in bacteria. Current Opinion in Microbiology, 2008, 11(2): 87-93.
[5] Kalinowski J, Bathe B, Bartels D, et al. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. Journal of Biotechnology, 2003, 104(1-3): 5-25.
[6] Yukawa H, Omumasaba C A, Nonaka H, et al. Comparative analysis of the Corynebacterium glutamicum grou Pand complete genome sequence of strain R. Microbiology, 2007, 153(4): 1042-1058.
[7] Blombach B, Seibold G M. Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of l-lysine production strains. Applied Microbiology and Biotechnology, 2010, 86(5): 1313-1322.
[8] Kawaguchi H, Vertes A A, Okino S, et al. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Applied and Environmental Microbiology, 2006, 72(5): 3418-3428.
[9] Lawlis V, Dennis M, Chen E, et al. Cloning and sequencing of the xylose isomerase and xylulose kinase genes of Escherichia coli. Applied and Environmental Microbiology, 1984, 47(1): 15-21.
[10] Song S, Park C. Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. Journal of Bacteriology, 1997, 179(22): 7025-7032.
[11] Buschke N, Schrder H, Wittmann C. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnology Journal, 2011, 6(3): 306-317.
[12] Kiefer P, Heinzle E, Zelder O, et al. Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Applied and Environmental Microbiology, 2004, 70(1): 229-239.
[13] Kim S H, Yun J Y, Kim S G, et al. Production of xylitol from d-xylose and glucose with recombinant Corynebacterium glutamicum. Enzyme and Microbial Technology, 2010, 46(5): 366-371.
[14] Inui M, Kawaguchi H, Murakami S, et al. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. Journal of Molecular Microbiology and Biotechnology, 2004, 8(4): 243-254.
[15] Okino S, Inui M, Yukawa H. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Applied Microbiology and Biotechnology, 2005, 68(4): 475-480.
[16] Sasaki M, Jojima T, Inui M, et al. Simultaneous utilization of d-cellobiose, d-glucose, and d-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Applied Microbiology and Biotechnology, 2008, 81(4): 691-699.
[17] Kawaguchi H, Sasaki M, Vertes A A, et al. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Applied and Environmental Microbiology, 2009, 75(11): 3419-3429.
[18] Jojima T, Omumasaba C A, Inui M, et al. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Applied Microbiology and Biotechnology, 2009, 85(3): 471-480.
[19] Sasaki M, Jojima T, Kawaguchi H, et al. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Applied Microbiology and Biotechnology, 2009, 85(1): 105-115.
[20] Brinkrolf K, Ploger S, Solle S, et al. The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. Microbiology, 2008, 154(4): 1068-1081.
[21] Nentwich S S, Brinkrolf K, Gaigalat L, et al. Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. Microbiology, 2009, 155(1): 150-164.
[22] Kawaguchi H, Sasaki M, Vertès A A, et al. Engineering of an l-arabinose metabolic pathway in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2007, 77(5): 1053-1062.
[23] Gopinath V, Meiswinkel T M, Wendisch V F, et al. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2011, 92(5): 985-996.
[24] Sakai S, Tsuchida Y, Okino S, et al. Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Applied and Environmental Microbiology, 2007, 73(7): 2349-2353.
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[3] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[4] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[5] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[6] ZHANG Ye,WANG Ji-ping,SU Tian-ming,HE Tie-guang,WANG Jin,ZENG Xiang-yang. Research Progress on Degradation of Lignocellulosic Biomass by Screening Microorganisms[J]. China Biotechnology, 2020, 40(6): 100-105.
[7] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[8] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[9] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[10] Meng-tong QIN,Jing HU,Guan-hua LI. Recent Developments and Future Prospect of Biological Pretreatment[J]. China Biotechnology, 2018, 38(5): 85-91.
[11] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[12] ZHAO Xiu-li, ZHOU Dan-dan, YAN Xiao-guang, WU Hao, CAIYIN Qing-gele, LI Yan-ni, QIAO Jian-jun. Regulation and Application in Metabolic Engineering of Bacterial Small RNAs[J]. China Biotechnology, 2017, 37(6): 97-106.
[13] MA Ze-lin, LIU Jia-heng, HUANG Xu, CAIYIN Qing-gele, ZHU Hong-ji. Research Progress on Utilization of Lignocellulosic Biomass by Microorganisms[J]. China Biotechnology, 2017, 37(6): 124-133.
[14] ZHAO Shuang, LIU Liu, WU Lin-huan, MA Jun-cai. Research and Development Trend of the Technology on Corynebacterium glutamicum[J]. China Biotechnology, 2016, 36(9): 101-109.
[15] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.