Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (11): 124-131    DOI:
    
Research Advances in Improvement of Xylitol Producing Strains by Genetic Engineering Technology
JIAO Jing-yu1,2, WU Mian-bin1,2,3, ZHAO Jiong-feng1,2, LIN Jian-ping1,2, YANG Li-rong1,2
1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China;
2. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
3. Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang, Taizhou 318000, China
Download: HTML   PDF(547KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Xylitol as a five carbon sugar alcohol and low caloric content, has been widely used in medicine, food and chemical fields. Compared with chemical synthesis method, biological synthesis method has become a research focus because of its mild operation conditions, low energy consumption, and little environmental pollution. However, there also exist the leading obstacles to the commercial production of xylitol by bioconversion, such as the different xylose metabolic pathways existed in natural microorganisms, nonspecific nature of xylose reductase(XR), and requiring nicotinamide cofactors (NADH and NADPH) in biosynthesis of xylitol. Based on reviewing and analyzing the current understanding on biocatalytic routes to xylitol production, novel genetic engineering strategies through improving metabolic pathways of microorganisms which can improve the biological catalytic conversion of xylitol yield were emphasised.

Key wordsXylitol      Microorganism      Genetic engineering      Biotransformation     
Received: 10 September 2012      Published: 25 November 2012
ZTFLH:  Q819  
Cite this article:

JIAO Jing-yu, WU Mian-bin, ZHAO Jiong-feng, LIN Jian-ping, YANG Li-rong. Research Advances in Improvement of Xylitol Producing Strains by Genetic Engineering Technology. China Biotechnology, 2012, 32(11): 124-131.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I11/124

[1] Mancilha I D, Karim M N. Evaluation of ion exchange resins for removal of inhibitory compounds from corn stover hydrolyzate for xylitol fermentation. Biotechnol Prog, 2003, 19(6): 1837-1841.
[2] 黄炜.玉米芯半纤维素水解液发酵生产木糖醇的研究.杭州:浙江大学,化学工程与生物工程,2004. Huang W. The Research of Cob Hemicellulose Hydrolysate Fermentation Production Xylitol. HangZhou: Zhejiang University, Department of Chemical and Bilolgical Engineering, 2004.
[3] Carvalho W, Santos J C, Canilha L, et al. Xylitol production from sugarcane bagasse hydrolysate: metabolic behaviour of Candida guilliermondii cells entrapped in Ca-alginate. Biochem Eng J, 2005, 25(1): 25-31.
[4] Canilha L, Silva J D A, Solenzal A. Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ion-exchanger resins for xylitol production. Process Biochem, 2004, 39(12): 1909-1912.
[5] Liaw W C, Chen C S, Chang W S, et al. Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immlbilized candida subtropicalis WF79. Biosci Bioeng, 2008, 105(2): 97-105.
[6] 张松青,游鹏程,郑笈,等.木糖醇在医药领域的应用.中国医院药学杂志,2007,27(11):1582-1584. Zhang S Q, You PC, Zheng D, et al. The application of xylitol in the field of medicine. China Hospital Pharm J, 2007, 27(11): 1582-1584.
[7] 任鸿均.木糖醇的生产新技术及其应用.化工科技市场,2005,28(2):1-6. Ren H J. The production new technology and application of the xylitol. Chemical Technology Market, 2005, 28(2): 1-6.
[8] 刘敏,王伟健,王文辉,等.咀嚼木糖醇口香糖对牙面菌斑原位pH值的影响.现代口腔医学杂志,2006,20(5):476-478. Liu M, Wang W J, Wang W H, et al. Effect of xylitol chewing gum on dental plaque pH in vivo. J Modern Somatol, 2006, 20(5): 476-478.
[9] 李齐宏,文军,薛洋.木糖醇牙膏对菌斑抑制效果的临床试验.牙体牙髓牙周病学杂志,2005,16(5):331-333. Li Q H, Wen J, Xue Y. Clinical study on the effect of the dentifrice with xylitol in the control of plaque. Chin J Conserv Dent, 2005, 16(5): 331-333.
[10] Akinterinwa O, Khankal R, Cirino P. Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol, 2008, 19(5): 461-467.
[11] Ferreira A S, Souza M D, Barbosa N R, et al. Leishmania amazonensis: xylitol as inhibitor of macrophage infection and stimulator of macrophage nitric oxide production. Experimental Parasitology,2008, 119(1): 74-79.
[12] Weissman J D, Fernandez F, Peter H. Xylitol nasal irrigation in the management of chronic rhinosinusitis: a pilot study.Laryngoscope, 2011, 121(11): 2468-2472.
[13] 黄静.木糖醇的合成、应用及市场前景.化工技术与开发,2003,32(5):12-15. Huang J. Synthesis, application and market prospect of xylitol. Technology & Development of Chemical Industry, 2003, 32(5): 12-15.
[14] Granstrom T B, Izumori K, Leisola M. A rare sugar xylitol.PartI: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biltechnol, 2007, 74(2): 277-281.
[15] Hudlicky T, Reed J W. Application of biotransformations and biocatalysis to complexity generation in organic synthesis. Chem Soc Rev, 2009, 38(11): 3117-3132.
[16] 邓立红,王艳辉,张扬,等.热带假丝酵母发酵生产木糖醇的研究.食品与发酵工业,2004,30(9):37-40. Deng L H, Wang Y H, Zhang Y, et al. Studies on xylitol fermentation by candida tropicalis. Food and Fermentation Industries, 2004, 30(9): 37-40.
[17] 张晓元,王松梅,朱希强,等.热带假丝酵母发酵法生产木糖醇的研究.食品与药品,2006,8 (11):27-31. Zhang X Y, Wang S M, Zhu X Q, et al. Study on fermentation condition of xylitol production by Candida tropicalis. Food and Drug, 2006, 8(11): 27-31.
[18] Zhang J M, Geng A L, Yao C Y, et al. Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresource Technology, 2012, 105(1): 134-141.
[19] Bae S M, Park Y C, Lee T H, et al. Production of xylitol by recombinant Saccharomy cescerevisiae containing xylose reductase gene in repeated fed-batch and cell recycle fermentations. Enzym.Microb.Tech, 2004, 35(6-7): 545-549.
[20] Kim T B, Lee Y J, Kim P, et al. Increased xylitol production rate during long term cell recycle fermentation of Candida tropicalis. Biotechnol, 2004, 26(8): 623-627.
[21] Silva S S, Santos J C, Carvalho W, et al. Use of a fluidized bed reactor operated in semi-continuous mode for xylose to xylitol conversion by Candida guilliermondii immobilized on porous glass. Process Biochem, 2003, 38(6):903-907.
[22] 蒋西然,李文利.纤维素乙醇基因工程研究进展.中国生物工程杂志,2009,29(7):127-133. Jiang X R, Li W L. Research progress in genetic engineering for cellulosic ethanol. China Biotechnology, 2009, 29(7): 127-133.
[23] 黎娅,孙晓菲,曹毅,等.酵母菌木糖醇发酵菌株的筛选.四川大学学报,2005,42(2):427-430. Li Y, Sun X F, Liu S Z, et al. Screening yeast strain for xylitol production. Journal of Sichuan University(Natural Science Edition), 2005, 42(2): 427-430.
[24] 丁兴红,夏黎明.影响半纤维素发酵液中分离纯化木糖醇关键因子的研究.中国食品学报,2006,6(6):87-91. Ding X H, Xia L M. Effects of several key factors on xylitol separation and purification in fermented hemicellulose hydrolyzates. Journal of Chinese Institute of Food Science and Technology, 2006, 6(6): 87-91.
[25] 陈高云,叶凯,涂振东,等.木糖醇脱氢酶研究进展.酿酒科技,2011,5:90-93. Chen G Y, Ye K, Tu Z D, et al. Research progress in xylitol dehydrogenase. Liquar-Making Science&Technology, 2011, 5: 90-93.
[26] Chao Y, Cao Y J, Zou H B, et al. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biltechnol, 2011, 89(3): 573-583.
[27] 李民,陈常庆.重组大肠杆菌高密度发酵研究进展.中国生物工程杂志,2000,20(2):26-31. Li M, Chen C Q. Progress studies of high cell-density culture of recombinant Escherichia coli. China Biotechnology, 2000, 20(2): 26-31.
[28] Suzuki T, Yokoyama S I, Kinoshita Y, et al. Expression of xyrA gene encoding for D-Xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli. Bioscience and Bioengineering, 1999, 87(3): 280-284.
[29] 张晓梅.遗传改造Zymomonas mobilis代谢木糖及其木糖醇产生机制的研究.济南:山东大学,微生物学,2009. Zhang X M. Metabolic engineering of Zymomonas mobilis for xylose utilization and mechanism of catalyzed formation of xylitol. Jinan: Shandong University, Microbiology, 2009.
[30] 吴春霞,阚建全.酵母菌转化木糖生产木糖醇的研究进展.中国食品添加剂,2007,3:110-113. Wu C X, Han J Q. Research progress on xylitol production fermentated by microbiology from hemicellulosic hydrolysate. Food and Additives, 2007, 3: 110-113.
[31] Nikhil U N, Zhao H M. Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metabolic Engineering, 2010, 12(5): 462-468.
[32] Nichols N N, Dien B S, Bothast R J. Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol, 2001, 56(1-2): 120-125.
[33] Boris G, Jorg S, Carbon catabolite repression in bacteria:many ways to make the most out of nutrients. Nature Reviews Microbiology, 2008, 6: 613-624.
[34] Khankal R, Chin J W, Cirino PC. Role of xylose transporters in xylitol production from engineered Escherichia coli. Biotechnology, 2008, 134(3-4): 246-252.
[35] Khankal R, Luziatelli F, Chin J W, et al. Comparison between Escherichia coli K-12 strains W3110 and MG1655 and wild-type E.coliB as platforms for xylitol production. Biotechnol, 2008, 30(9):1645-1653.
[36] Nair N U, Zhao H M. Evolution in Reverse: Engineering a D-xylose-specific xylose reductase. ChemBioChem, 2008, 9(8): 1213-1215.
[37] Woodyer R, Simurdiak M, Zhao H M. Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa. Appl Environ Microbiol, 2005, 71(3):1642-1647.
[38] Zhao H M, Nair N, Racine M, et al. Production of xylitol from a mixture of hemicellulosic sugars: US, 08302A1 . 2011-07-21.
[39] Sakakibara Y, Saha B C, Taylor P. Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli. Bioscience and Bioengineering, 2009, 107(5): 506-511.
[40] Chin J W, Khankal R, Monroe C A, et al. Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnology and Bioengineering, 2009, 102(1): 209-220.
[41] Cirino PC, Chin J W, Ingram L O. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnology and Bioengineering, 2006, 95(6): 1167-1176.
[42] Chin J W, Cirino PC. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Buitechnol Prog, 2011, 27(2): 333-341.
[43] Ahmad I, Shim W Y, Jeon W Y, et al. Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioprocess Biosyst, 2012, 35(1-2): 199-204.
[44] Nidetzky B, Helmer H, Klimacek M, et al. Characterization of recombinant xylitol dehydrogenase from Galactocandida mastotermitis expressed in Escherichia coli. Chemico-Biological Interactions, 2003, 143(44): 533-542.
[45] Kim Y W, Choi J H, Kim J W, et al. Directed evolution of thermus maltogenic amylase toward enhanced thermal resistance. Appl Envieon Microbiol, 2003, 69(8): 4866-4874.
[46] Jeon W Y, Yoon B H, Ko B S, et al. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst, 2012, 35(1-2): 191-198.
[47] Akinterinwa O, Cirino PC. Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metabolic Engineering, 2009, 11(1): 48-55.
[48] Luccio E D, Petschacher B, Voegtli J, et al. Structural and kinetic studies of induced fit in xylulose kinase from Escherichia coli. Mol Biol, 2007, 365(3): 783-798.
[49] Causey T B, Zhou S, Shanmugam K T, et al. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production. Proc Natl Acad Sci USA, 2003, 100(3): 825-832.
[50] Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA, 2000, 97(12): 6640-6645.
[51] Martinez-Morales F, Borges A C, Martinez A, et al. Chromosomal integration of heterologous DNA in Escherichia coli with precise removal of markers and replicons used during construction. J Bacteriol, 1999, 181(22): 7143-7148.
[52] 闫继爱,张雪,陈宁,等.利用Red同源重组技术构建产L-苏氨酸的基因工程菌.中国生物工程杂志,2010,30(3):79-84. Yan J A, Zhang X, Chen N, ea al. Construction of genetic engineering strains for L-threonine production by Red recombination. China Biotechnology, 2010, 30(3): 79-84.
[1] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[2] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[3] LV Xue-qin, JIN Ke, LIU Jia-heng, CUI Shi-xiu, LI Jiang-hua, DU Guo-cheng, LIU Long. Quantitative Analysis of Membrane Ordering of Living Industrial Model Microorganisms[J]. China Biotechnology, 2021, 41(1): 20-29.
[4] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[5] GAO Xiao-peng,HE Meng-chao,XU Ke,LI Chun. Research Progress on pH Regulation in the Process of Industrial Microbial Fermentation[J]. China Biotechnology, 2020, 40(6): 93-99.
[6] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[7] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[8] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[9] Shu-xia MA,Ling ZHANG,Jin-fei YAN,Song YOU. Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.[J]. China Biotechnology, 2018, 38(9): 27-34.
[10] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[11] CAO Bi-pu,MIAO Li-hua,GUO Bao-yan,HE Li-ping. The Feasibility Analysis That Nanopore Sequencing Technology Is Applied to Food Microbiological Detection[J]. China Biotechnology, 2018, 38(12): 91-98.
[12] Zheng-san ZUO,Dong-sheng GUO,Xiao-jun JI,Ping SONG,He HUANG. Polyunsaturated Fatty Acids and Their Derivatives in the Intestinal Tract:a Review[J]. China Biotechnology, 2018, 38(11): 66-75.
[13] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[14] GAO Jiao-jiao, YANG Shu-lin. Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology[J]. China Biotechnology, 2017, 37(8): 72-77.
[15] WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus[J]. China Biotechnology, 2017, 37(5): 59-65.