Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (11): 107-114    DOI:
    
Progress in Improving the Supply of Precursors for Heterologous Expression of Polyketides
DUAN Yue-jiao, XUE Chao-you, LU Wen-yu
Department of Biological Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(655KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Polyketides have been widely used in clinical because of their important biological activities. But in the natural strains there are various of limitations in the process of synthesis that affect the application of the polyketides. The heterologous expression can lift the restriction as a useful tool. The key limiting factor for heterologous expression of polyketides is the inadequate supply of intracellular precursors. An overview on strategies to improve the supply of the precursors in the typical heterologous expression host strains is provided: introduce the biosynthetic pathway of the precursors to the heterologous expression host bacteria to reconstruct the metabolic network, over-express the synthesis pathway of the heterologous precursor, inhibite metabolic branch flux, knockout within-derived metabolic pathways, to improve the supply of precursors. It provides a reference for research and industrial production of heterologous expression

Key wordsPolyketides      Heterologous expression      Precursor supply     
Received: 26 June 2012      Published: 25 November 2012
ZTFLH:  Q812  
Cite this article:

DUAN Yue-jiao, XUE Chao-you, LU Wen-yu. Progress in Improving the Supply of Precursors for Heterologous Expression of Polyketides. China Biotechnology, 2012, 32(11): 107-114.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I11/107

[1] Zerikly M, Challis G L. Strategies for the discovery of new natural products by genome mining. ChemBioChem, 2009, 10(4): 625-633.
[2] Gomez-Escribano J P, Bibb M J. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microbial Biotechnology, 2011, 4(2): 207-215.
[3] Staunton J, Weissman K J. Polyketide biosynthesis: a millennium review. Natural Product Reports, 2001, 18(4):380-416.
[4] Alper H, Jin Y S, Moxley J F, et al. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metabolic Engineering, 2005, 7(3): 155-164.
[5] Pfeifer B A, Admiraal S J, Gramajo H, et al. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science, 2001, 291(5509): 1790-1792.
[6] Dayem L C, Carney J R, Santi B A, et al. Metabolic engineering of a methylmalonyl-CoA mutase-epimerase pathway for complex polyketide biosynthesis in Escherichia coli. Biochemistry, 2002, 41(16): 5193-5201.
[7] Boghigian B A, Pfeifer B A. Current status, strategies, and potential for the metabolic engineering of heterologous polyketides in Escherichia coli. Biotechnology Letters, 2008, 30(8): 1323-1330.
[8] Pfeifer B A, Khosla C. Biosynthesis of polyketides in heterologous hosts. Microbiology and Molecular Biology Reviews, 2001, 65(1): 106-118.
[9] Murli S, Kennedy J, Dayem LC, et al. Metabolic engineering of Escherichia coli for improved 6-deoxyerythronolide B production. Journal of Industrial Microbiology and Biotechnology, 2003, 30(8): 500-509.
[10] Rodriguez E, Gramajo H. Genetic and biochemical characterization of the alpha and beta components of a propionyl-CoA carboxylase complex of Streptomyces coelicolor A3(2). Microbiology,1999,145(11): 3109-3119.
[11] Leadlay PF. Purification and characterization of methylmalonyl-CoA epimerase from Propionibacterium shermanii. Biochemical Journal, 1981, 197(2): 413.
[12] McKie N, Kee PN H, Patchett M L, et al. Adenosylcobalamin-dependent methylmalonyl-CoA mutase from Propionibacterium shermanii. Active holoenzyme produced from Escherichia coli. Biochemical Journal, 1990, 269(2): 293.
[13] An JH, Kim YS. A gene cluster encoding malonyl‐CoA decarboxylase (MatA), malonyl‐CoA synthetase (MatB) and a putative dicarboxylate carrier protein (MatC) in Rhizobium trifolii. European Journal of Biochemistry, 1998. 257(2): 395-402.
[14] Gao X, Wang P, Tang Y. Engineered polyketide biosynthesis and biocatalysis in Escherichia coli. Applied Microbiology and Biotechnology, 2010, 88(6):1233-1242.
[15] Murli S, Kennedy J, Dayem L C. Metabolic engineering of Escherichia coli for improved 6-deoxyerythronolide B production. Journal of Industrial Microbiology and Biotechnology, 2003, 30(8): 500-509.
[16] Leonard E, Yan Y, Fowler Z L, et al. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Molecular Pharmaceutics, 2008, 5(2): 257-265.
[17] Tsang A W, Escalante-Semerena J C. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide: 5, 6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in salmonella typhimurium LT2. Journal of Biological Chemistry, 1998, 273(48): 31788-31794.
[18] Haller T, Buckel T, Retey J, et al. Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry, 2000, 39(16): 4622-4629.
[19] Nougayrède J P, Homburg S, Taieb F, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science, 2006, 313(5788): 848-851.
[20] Peirú S, Menzella H G, Rodriguez E. Production of the potent antibacterial polyketide erythromycin C in Escherichia coli. Applied and Environmental Microbiology, 2005, 71(5): 2539-2547.
[21] Mutka S C, Carney J R, Liu Y, et al. Heterologous production of epothilone C and D in Escherichia coli. Biochemistry, 2006, 45(4): 1321-1330.
[22] Watanabe K, Rude M A, Walsh C T, et al. Engineered biosynthesis of an ansamycin polyketide precursor in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(17): 9774.
[23] Wang Y, Boghigian B A, Pfeifer B A. Improving heterologous polyketide production in Escherichia coli by overexpression of an S-adenosylmethionine synthetase gene. Applied Microbiolology and Biotechnology, 2007, 77(2): 367-373.
[24] Horswill A R, Escalante-Semerena J C. The prpE gene of Salmonella typhimurium LT2 encodes propionyl-CoA synthetase. Microbiology, 1999, 145(6): 1381-1388.
[25] Zhang H, Boghigian B A, Pfeifer B A, et al. Investigating the role of native propionyl-CoA and methylmalonyl-CoA metabolism on heterologous polyketide production in Escherichia coli. Biotechnology and Bioengineering, 2010, 105(3): 567-573.
[26] Zhang H, Wang Y, Pfeifer B A. Bacterial hosts for natural product production. Molecular Pharmaceutics, 2008, 5(2):212-225.
[27] Gould S J, Hong S T, Carney J R. Cloning and heterologous expression of genes from the kinamycin biosynthetic pathway of Streptomyces murayamaensis. The Journal of Antibiotics, 1998, 51(1): 50.
[28] Sthapit B, Lamichhane R, Liou K, et al. Neocarzinostatin naphthoate synthase: an unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Letters, 2004, 566(1): 201-206.
[29] Yan X, Probst K, Linnenbrink A, et al. Cloning and heterologous expression of three type II PKS gene clusters from Streptomyces bottropensis. Chembiochem, 2012, 13(2): 224-230.
[30] Baltz R H. Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. Journal of Industrial Microbiology and Biotechnology, 2010, 37(8): 759-772.
[31] Martinez A, Kolvek S J, Yi PC L T, et al. Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Applied and Environmental Microbiology, 2004,70(4): 2452-2463.
[32] McDaniel R, Ebert-Khosla S, Hopwood D A, et al. Engineered biosynthesis of novel polyketides. Science, 1993, 262(5139): 1546-1550.
[33] Kim S H, Lee H N, Kim H J, et al. Transcriptome analysis of an antibiotic downregulator mutant and synergistic actinorhodin stimulation via disruption of a precursor flux regulator in Streptomyces coelicolor. Applied and Environmental Microbiology, 2011,77(5): 1872.
[34] Lee H N, Huang J, Kim S H, et al. Putative TetR family transcriptional regulator SCO1712 encodes an antibiotic downregulator in Streptomyces coelicolor. Applied and Environmental Microbiology, 2010, 76(9): 3039-3043.
[35] Lee H N, Kim H J, Kim P, et al. Minimal polyketide pathway expression in an actinorhodin cluster-deleted and regulation-stimulated Streptomyces coelicolor. Joural of Industrial Microbiology and Biotechnology, 2012, 39(5):805-811.
[36] Komatsu M, Uchiyama T U, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proceedings of the National Academy of Sciences, 2010, 107(6): 2646-2651.
[37] Lombó F, Pfeifer B, Leaf T, et al. Enhancing the atom economy of polyketide biosynthetic processes through metabolic engineering. Biotechnology Progress, 2001, 17(4): 612-617.
[38] Mutka S C, Bondi S M, Carney J R, et al. Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Research, 2006, 6(1): 40-47.
[39] Sakai K, Kinoshita K, Nihira T, et al. Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. Applied Microbiology and Biotechnology, 2012,93(5): 1-12.
[40] Wong F T, Khosla C. Combinatorial biosynthesis of polyketides-a perspective. Current Opinion in Chemical Biology, 2012,16(1-2):117-123.
[1] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[2] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[3] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[4] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[5] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[6] LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress[J]. China Biotechnology, 2017, 37(8): 84-95.
[7] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[8] WANG Rui-zhao, PAN Cai-hui, WANG Ying, XIAO Wen-hai, YUAN Ying-jin. Design and Construction of highβ-carotene Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(7): 83-91.
[9] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[10] TAO Wen-na, XIA Li-qiu, DING Xue-zhi, TANG Ying. Cloning and Function Study of amtS Gene from Saccharopolyspora spinosa[J]. China Biotechnology, 2015, 35(2): 25-30.
[11] XIA Ya-mu, LI Chen-chen. Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2015, 35(2): 105-110.
[12] YUE Chang-wu, LI Yuan-yuan, LV Yu-hong, WANG Miao, SHAO Mei-yun, LIU Ming-hao, HUANG Ying. Isolation, Expression and Identification of Multifunctional Chitosanase from Marine Streptomyces olivaceus FXJ7.023[J]. China Biotechnology, 2014, 34(8): 47-53.
[13] LUO Man-jie, XIE Yuan, QIAN Zhi-gang, FENG Yan, YANG Guang-yu. High-level Heterogenous Expression of a Hyperthermophilic Esterase in Different Hosts[J]. China Biotechnology, 2014, 34(12): 36-44.
[14] QIAN Hui, ZHANG Chong, LU Zhao-xin, BIE Xiao-mei, ZHAO Hai-zhen, LV Feng-xia. Expression of Paenibacillus polymyxa EJS-3 Fibrinolytic Enzyme Gene in Pichia pastoris[J]. China Biotechnology, 2014, 34(12): 45-50.
[15] LI Si-jia, WANG Ya-wei, FU Zheng, WANG Wen-jun, Ossi Turunen, XIONG Hai-rong. Expression of Thermomyces lanuginosus Xylanase 1YNA and Its Disulphide Bridge Mutant in Pichia Pastoris[J]. China Biotechnology, 2013, 33(3): 74-79.