Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (10): 119-127    DOI:
    
Advances in the Research of Biological Production of Acrylic Acid
MENG Qing-qing1, YANG Jian-guo2, WANG Feng-huan 1
1. School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China;
2. College of Life Science and Technology Beijing University of Chemical Technology, Beijing 100029, China
Download: HTML   PDF(578KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Acrylic acid is one of the important industrial chemicals,it is widely used in many fields such as coating materials and absorbent materials. Currently, it is produced mainly through the oxidation of propylene. However, due to the decrease of petrochemical resource and the environmental problems caused by the process of manufacture, acrylic acid preparation using bioprocess has become a research hotspot. The properties of acrylic acid and its applications in industry were introduced, meanwhile the recent advances in the research and development of acrylic acid biosynthesis were reviewed. The methods were classified into entire biological method and semi-biological method according to whether chemical processing methods were used in the procedure of manufacture. The semi-biological method mainly included the chemical dehydration of lactic acid and the biotransformations of acrylonitrile and acrylamide. Entire biological methods mainly included the biological dehydration of lactic acid, 3-hydroxylpropionic acid pathway, the direct fermentation of saccharides and DMSP pathway. More emphasis were put on the dehydration of lactic acid, just as lactic acid preparation had been a proven technique. For the factors above, the biological dehydration of lactic acid meet the demand of sustainable development and it was introduced detailedly. Simultaneously, the advantages and disadvantages of each method were discussed, providing suggestions for the following research of producing acrylic acid by biomass.

Key wordsAcrylic acid      Biological production      Entire biological method      Semi-biological method     
Received: 16 May 2012      Published: 25 October 2012
ZTFLH:  Q819  
Cite this article:

MENG Qing-qing, YANG Jian-guo, WANG Feng-huan. Advances in the Research of Biological Production of Acrylic Acid. China Biotechnology, 2012, 32(10): 119-127.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I10/119

[1] 景志刚, 王学丽, 南洋. 丙烯酸生产工艺发展趋势. 当代化工, 2008, 37(3): 313-315. Jing Z G, Wang X L, Nan Y. Process technology and development tendency of acrylic acid in China contemporary chemical industry. Contemporary Chemical Industry, 2008, 37(3): 313-315.
[2] 张岚. 丙烯酸及酯的市场回顾与展望. 化工中间体, 2009, 6(11): 6-11. Zhang L. Present situation and develop trend of acrylic acid and acrylate products. Chemical Intermediate, 2009, 6(11): 6-11.
[3] 玄光善, 王洪涛, 吴效楠. 微生物法生产丙烯酸的研究进展. 生物技术, 2007, 17(2): 89-92. Xuan G S, Wang H T, Wu X N. Advances in the research of acrylic acid production by microbial method. Biotechnology, 2007, 17(2): 89-92.
[4] Willke T, Vorlop K D. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied Microbiology and Biotechnology, 2004, 66(2): 131-142.
[5] 杨海堃. 丙烯酸及其酯类产品国内外现状及发展趋势. 化工技术经济, 2001, 3(2): 17-19. Yang H K. Present situation and develop trend of acrylic acid and acrylate products at home and abroad. Chemical Techno Economics, 2001, 3(2): 17-19.
[6] Freidig A P, Verhaar H J, Hermens J L. Comparing the potency of chemicals with multiple modes of action in aquatic toxicology:acute toxicity due to narcosis versus reactive toxicity of acrylic compounds. Environmental Science and Technology, 1999, 33(17): 3038-3043.
[7] Xu X B, Lin J P, Cen P L. Advances in the research and development of acrylic acid production from Biomass. Chinese Journal of Chemical Engineering, 2006, 14(4): 419-427.
[8] Zhang M, Ma L, Yang J C, et a1. Non-equilibrium stage static simulation of lactic acid purification reactive distillation process. Journal of Chemical Industry and Engineering, 2005, 56(6): 103l-1034.
[9] 王玉华, 王秀娟, 王萍. L-乳酸生产菌种选育技术. 生命的化学, 2008, 23(6): 775-777. Wang Y H, Wang X J, Wang P. Advances in the strain breeding for L-lactic acid production. Chemistry of Life, 2008, 28(6): 775-777.
[10] Yun J S, Wee Y J, Ryu H W. Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1. Enzyme and Microbial Technology, 2003, 33(4): 416-423.
[11] 赵鑫, 赵良启, 谢红, 等. 发酵生L-乳酸的现状与展望.山西化工, 2005, 25(1): 15-19. Zhao X, Zhao L Q, Xie H, et al. The current situation and prospect of production of L-lactic acid fermentation. Shanxi Chemical Industry, 2005, 25(1): 15-19.
[12] 佟明友, 方向晨, 刘树臣, 等. L-乳酸和聚乳酸的研究进展. 石油化工, 2003, 32(8): 724-728. Tong M Y, Fang X C, Liu S C, et al. Progress in research of L-lactic acid and polylactic acid. Petrochemical Technology, 2003, 32(8): 724-728.
[13] 钱志良, 劳含章, 王健, 等. 工业乳酸发酵的近期进展. 生物加工过程, 2003, 1(1): 23-27. Qian Z L, Lao H Z, Wang J, et al. Recent advances in industrial lactic acid production by microorganisms. Chinese Journal of Bioprocess Engineering, 2003, 1(1): 23-27.
[14] Vishal S, Nikki G, Datta M. Lactic acid fermentation in cell-recycle membrane bioreactor. Applied Microbiology and Biotechnology, 2006, 128(2): 171-184.
[15] John H A, Perry J P, Duane C Y. Metabolism of acrylate to β-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium. Applied and Environmental Microbiology, 1999, 65(11): 5075-5081.
[16] Holmen R E. Acrylates by catalytic dehydration of lactic acid and acrylates: US, 2859240. 1958-5-6.
[17] McCrackin P J, Lira C T. Conversion of lactic acid to acrylic acid in near-critical water. Industrial and Engineering Chemistry Research, 1993, 32(11): 2608-2613.
[18] Sawicki R A. Catalyst for dehydration of lactic acid to acrylic acid: US, 4729978. 1988-3-08.
[19] Paparizos C, Dolhyj S R, Shaw W G. Catalytic conversion of lactic acid and ammonium lactate to acrylic acid: US, 4786756. 1988-11-22.
[20] Mok W S L, Antal M J, Jones M. Formation of acrylic acid from lactic acid in supercritical water. The Journal of Organic Chemistry, 1989, 54(19): 4596-4602.
[21] Michael M A, Werpy T A, Holladay J E. Methods of forming alpha, beta-unsaturated acids and esters: US, 6992209. 2006-1-31.
[22] Nallia S, Coopera D G, Nicellb J A. Metabolites from the biodegradation of diester plasticizers by Rhodococcus rhodochrous. Science of the Total Environment, 2006, 366(1): 286-294.
[23] 赵孝先, 毛华, 张宁, 等. 利用微生物转化丙烯腈生产丙烯酸的研究. 山东大学学报, 1994, 29(2): 217-223. Zhao X X, Mao H, Zhang N, et al. The production of acrylic acid by microbial conversion of acrylonitrile. Journal of Shandong University, 1994, 29(2): 217-223.
[24] 罗晖, 王铁钢, 于慧敏, 等. Rhodococcus rhodochtoustg1-A6腈水解酶的表达和催化的研究. 现代化工, 2006, 26(2): 109-111. Luo H, Wang T G, Yu H M, et al. Expression and catalyzing process of the nirilase in Rhodococcus rhodochrous tg1-A6. Modem Chemical Industry, 2006, 26(2): 109-111.
[25] Colby J, Snell D, Black G W. Immobilization of Rhodococcus AJ270 and use of entrapped biocatalyst for the production of acrylic acid. Monatshefte fuer Chemie, 2000, 131(6): 655-666.
[26] 张猛, 邵敬铭, 张春雷. 生物法生产丙烯酸技术进展. 丙烯酸化工与应用, 2007, 20(4): 1-4. Zhang M, Shao J M, Zhang C L. Advances in the technology of acrylic acid production by biological method. Acrylic Acid Chemical Industry and Application, 2007, 20(4): 1-4.
[27] Adrie J J, Susana S, Telma T F,et al. Feasibility of acrylic acid production by fermentation, Applied Microbiology and Biotechnology, 2005, 67(6): 727-734.
[28] Akedo M, Cooney C L, Sinskey A J. Direct demonstration of lactate-acrylate interconversion in Clostridium propionicum. Nature Biotechnology, 1983, 1(9): 791-794.
[29] Cardon B P, Barker H A. Amino acid fermentations by Clostridium propionicum and Diplococcus glycinophilus. Archives of Biochemistry and Biophysics, 1947, 12(3): 165-171.
[30] Jacob U, Mack M, Clausen T, et.al. Glutaconate CoA-transferase from Acidaminococcus fermentans: the crystal structure reveals homology with other CoA-transferases. Structure, 1997, 5(3): 415-426.
[31] Danner H, Urmos M, Gatrner M, et.al. Biotechnological production of acrylic acid from biomass. Applied Microbiology and Biotechnology, 1998, 70(1): 887-894.
[32] Cardon B P, Barke H A. Two new amino-acid-fermenting bacteria, Clostridium propionicum and Diplococcus glycinophilus, Journal of Bacteriology, 1946, 52(6): 629-631.
[33] 王晨飞, 王凤寰, 田平芳, 等. 丙酸梭菌简易培养及电转化方法. 生物加工过程, 2009, 8(5): 35-38. Wang C F, Wang F H, Tian P F, et al. Culture and electroporation of Clostridium propionicum. Chinese Journal of Bioprocess Engineering, 2009, 8(5): 35-38.
[34] Yue Y, Lian J N, Tian P F, et al. Cloning of amidase gene from Rhodococcus erythropolis and expression by distinct promoters in Bacillus subtilis. Journal of Molecular Catalysis B: Enzymatic, 2009, 56(2): 89-95.
[35] Hasegawa J, Ogura M. Production of β-hydroxypropionic acid from propionic acid by a Candida rugosa mutant unable to assimilate propionic acid:studies on β-hydroxypropionic acid. Journal of Fermentation Technology, 1982, 60(6): 591-594.
[36] Takamizawa K, Horitsu H, Ichikawa T, et al. β-Hydroxypropionic acid production by Byssochlamys sp. grown on acrylic acid. Applied Microbiology and Biotechnology, 1993, 40(2): 196 -200.
[37] Anon Cargilll. Develops new organic acid fermentation. Industrial Bioprocessing, 2002, 24(2): 3.
[38] 楼坚, 裘娟萍. 生物法合成3-羟基丙酸的研究进展.工业微生物, 2006, 36(4): 56-60. Lou J, Qiu J P. Research and development of 3-hydroxypropionic acid by microbes and engineered cells. Industrial Microbiology, 2006, 36(4): 56-60.
[39] Sylvia H, Jan F, Nasser G. Autotrophic C02 fixation by Chloroflexus aurantiacus: study of glyoxylate formation assimilation via the 3-hydroxypropionat cycle. Journal of Bacteriology, 2001, 183(14): 4302-4316.
[40] Menendez C, Bauer Z, Huber H,et al. Presence of acetyl coenzyme A(CoA) carboxylase and propionyl-CoA carboxylase in autotrophic crenarchaeota and indication for carbon fixation. Journal of Bacteriology, 1999, 181(4): 1088-1098.
[41] Ishii M, Chuakrut S, Arai H, et al. Occurrence, biochemistry and possible biotechnological application of the 3-hydroxypropionate cycle. Applied Microbiology and Biotechnology, 2004, 64(5): 605-610.
[42] O’Brien D J, Panzer C C, Eiselet W P. Biological production of acrylic acid from cheese whey by resting cells of Clostridium propionicum. Biotechnology Process, 1990, 6(4): 237-242.
[43] 李晶. 埃氏巨球形菌发酵法生产丙烯酸研究.北京: 北京化工大学, 生命科学与技术学院, 2008. Li J. Microbial production acrylic acid by Megasphaera elsdenii. Beijing: Beijing University of Chemical Technology, College of Life Science and Technology, 2008.
[44] Danner H, Braun R. Biotechnology for the production of commodity chemicals from biomass. The Royal Society of Chemistry, 1999, 28(2): 395-405.
[45] Sanseverino J, Montenecourt B S, Sands J A. Detection of acrylic acid formation in Megasphaera elsdenii in the presence of 3-butynoic acid. Applied Microbiology and Biotechnology, 1989, 30(3): 239-242.
[46] 杨桂朋,景伟文, 陆小兰. 海洋中DMSP的研究进展.中国海洋大学学报, 2004, 34(5): 854-859. Yang G P, Jing W W, Lu X L. Recent progress in the study of oceanic dimethylsulfoniopropionate. Periodical of Ocean University of China, 2004, 34(5): 854-859.
[47] 杨桂朋, 厉丞煊. 海洋生物对二甲基硫生产的控制作用研究. 中国海洋大学学报. 2009, 39 (3): 453-460. Yang G P, Li C X. Biologic processes that influence the production of dimethylsulfide(DMS) from marine phytoplankton. Periodical of Ocean University of China, 2009, 39(3): 453-460.
[48] 王莉莉, 刘春颖, 杨桂朋, 等. 海洋中丙烯酸的研究进展. 海洋环境科学, 2012, 31(2): 295-299. Wang L L, Liu C Y, Yang G P, et al. Study progress on acrylic acid in ocean. Marine Environmental Science, 2012, 31(2): 295-299.
[49] Noordkamp D J B, Schotten M, Gieskes W W. High acrylate concentrations in the mucus of Phaeocystis globosa colonies. Aquatic Microbial Ecology, 1998, 16(1): 45-52.
[50] Yang H F, Mctaggart A R, Dacidson A T, et al. Measurement of acrylic acid and dimethyl sulfide in Antarctic coastal water during a summer bloom of Phaeocystis pouchetii. Proceedings of the NIPR Symposium on Polar Biology, 1994, 7, 43-52.
[51] 杨和福. 紫外辐射对南极棕囊藻细胞DMSP合成和DMS释放率的影响. 海洋学报, 1998, 20(5): 101-108. Yang H F. Effect of ultraviolet-B radiation on the DMSP synthesis and DMS release of Phaeocystis antarctica. Acta Oceanologica Sinica, 1998, 20(5): 101-108.
[52] Ansede J H, Pellechia P J, Yoch D C. Nuclear magnetic resonance analysis of dimethylsulfoniopropionate (DMSP) and acrylate metabolism by a DMSP lyase-producing marine isolate of the α-subclass of proteobacteria. Applied Microbiology and Biotechnology, 2001, 67(7): 3134-3139.
[53] Cantoni G L, Anderson D G. Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa. Journal of Biological Chemistry, 1955, 222(7):171-177.
[54] Groene T. Biogenic production and consumption of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the marine epipelagic zone: a review. Journal of Marine Systems, 1995, 6(3): 191-209.
[1] . [J]. China Biotechnology, 2021, 41(12): 1-3.
[2] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[3] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[4] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[5] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[6] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[7] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[12] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[13] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[14] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[15] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.