Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (10): 112-118    DOI:
    
Advances on Shaker-type K+ Channels in Plants
KU Wen-zhen, ZHAO Yun-lin, DONG Meng
College of Chemistry and Environment Engineering, Hunan City University, Yiyang 413000, China
Download: HTML   PDF(449KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Potassium (K+) channel is one of the important ways of plant potassium absorption. Shaker-type K+ channels is the first had been discovered in the K+ channel and the most in-depth potassium K+ channels. Recently, many Shaker-type K+ channels genes, such as AKT1, AtKC1, QsAKT1, GORK, AKT2, have been isolated from different plants or different organs of the same plant. The latest research advances about the structure, function, expression, localization, physiological roles and regulation of Shaker-type K+ channels were summarized.

Key wordsPlant      Shaker-type K+ channels      Physiological function      Regulation     
Received: 09 April 2012      Published: 25 October 2012
ZTFLH:  Q819  
Cite this article:

KU Wen-zhen, ZHAO Yun-lin, DONG Meng. Advances on Shaker-type K+ Channels in Plants. China Biotechnology, 2012, 32(10): 112-118.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I10/112

[1] Szczerba M W, Britto D T, Kronzucker H J. K+ transport in plants: Physiology and molecular biology. Journal of Plant Physiology, 2009, 166(5): 447-466.
[2] Anderson A, Huprikar S S, Kochian L V, et al. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 1992, 89: 3736-3740.
[3] Sentenac H, Bonneaud N, Minet M, et al. Cloning and expression in yeast of a plant potassium ion transport system. Science, 1992, 256: 663-665.
[4] Lainé M, Papazian D M, Roux B. Critical assessment of a proposed model of Shaker. FEBS Lett, 2004, 564:257-263.
[5] Pilot G, Gaymard F, Mouline K, et al. Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol, 2003, 51: 773-787.
[6] Moshelion M, Becker D, Czempinski K, et al. Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol, 2002, 128:634-642.
[7] Formentin E, Varotto S, Costa A, et al. DKT1, a novel K+ channel from carrot, forms functional heteromeric channels with KDC1. FEBS Lett, 2004, 573:61-67.
[8] Gambale F, Uozumi N. Properties of Shaker-type potassium channels in higher plants. J Membrane Biol, 2006, 210: 1-19.
[9] 王毅, 武维华. 植物钾营养高效分子遗传机制. 植物学报, 2009, 44 (1): 27-36. Wang Y, Wu W H. Molecular genetic mechanism of high efficient potassium uptake in plants.Chinese Bulletin of Botany, 2009, 44 (1): 27-36.
[10] Reintanz B, Szyroki A, Ivashikina N, et al. AtKC1, a silent Arabidopsis potassium channel α-subunit modulates root hair K+ influx. Proc Natl Acad Sci USA, 2002, 99: 4079-4084.
[11] Ardie S W, Liu S, Takano T, et al. Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1 , enhances salt tolerance in Arabidopsis. Plant Cell Reports, 2010, 29(8): 865-874.
[12] Fuchs I, Stolzle S, Ivashikina N, et al. Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta, 2005, 221:212-221.
[13] Duby G, Hosy E, Fizames C, et al. AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels. Plant Journal, 2008, 531(1): 115-123.
[14] Gierth M, Maser P, Schroeder J I. The potassium transporter AtHAK5 functions in K+ deprivation-induced high affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol, 2005, 137:1105-1114.
[15] 吴平, 印莉萍, 张立平, 等. 植物营养分子生理学. 北京: 科学出版社, 2001.163-211. Wu P, Yin L P, Zhang L P. et al. Plant Nutritional Molecular Physiology. Beijing: Science Press, 2001.163-211.
[16] Fuchs I, Stolzle S, Ivashikina N, et al. Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta, 2004, 12: 14.
[17] 闵水珠. 植物钾离子通道的分子生物学研究进展.浙江农业学报, 2005, 17 (3): 163-169 Ming S Z. The progress on the molecular biology of the K+ channels in plants. Acta Agriculturae Zhejiangensis. 2005, 17(3): 163-169.
[18] Hedrich R, Fuchs I, Philippar K, et al. Blue light regulates an aux-ininduced K+ channel gene in the maize coleoptile. PNAS, 2003, 100(20): 11795-11800.
[19] Philippar K, Buchsenechutz K, Ashagen M, et al. The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of C4 grass Zea mays. J Biol Chem, 2003, 278: 16973-16981.
[20] Mouline K, Véry A A, Gaymard F, et al. Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes Dev, 2002, 16:339-350.
[21] Ivashikina N, Becker D, Ache P, et al. K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Letters, 2001, 508: 463-469.
[22] Gaymard F, Pilot G, Lacombe B, et al. Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell, 1998, 94:647-655.
[23] Ashley M K, Grant M, Grabov A. Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot, 2006, 57:425-436.
[24] Dreyer I, Porée F, Schneider A, et al. Assembly of plant Shaker-like Kout channels requires two distinct sites of the channel α-subunit. Biophysical J,2004, 87: 858-872.
[25] Chérel I, Michard E, Platet N, et al. Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell, 2002, 14:1133-1146.
[26] Xicluna J, Lacombe B, Dreyer I, et al. Increased functional diversity of plant K+ channels by preferential heteromerization of the Shaker-like subunits AKT2 and KAT2. J Biol Chem, 2007, 282: 486-494.
[27] Deeken R, Geiger D, Fromm J, et al. Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta, 2002, 216: 334-344.
[28] Ivashikina N, Deeken R, Fischer S, et al. AKT2/3 subunits render guard cell K+ channels Ca2+ sensitive. J Gen Physiol, 2005, 125:483-492.
[29] Véry A A, Sentenac H. Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol, 2003, 54:575-603.
[30] Lacombe B, Pilot G, Gaymard F, et al. pH control of the plant outwardly-rectifying potassium channel SKOR. FEBS Lett, 2000, 466: 351-354.
[31] Xu J, Li H D, Chen L Q, et al. A Protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125: 1347-1360.
[32] Wang X Q, Ullah H, Jones A M, et al. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science, 2001, 292:2070-2072.
[33] Sottocornola B, Visconti S, Orsi S, et al. The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. J Biol Chem, 2006, 281:35735-35741.
[34] Véry A A, Sentenac H. Cation channels in the Arabidopsis plasma membrane. Trends in Plant Science, 2002, 7: 168-175.
[35] Li W, Assmann S M. Characterization of a G-protein regulated outward K+ current in mesophyll cells of Vicia faba L. Proc Natl Acad Sci USA, 1993, 90: 262-266.
[36] Kelly W B, Esser J E, Schroeder J I. Effects of cytosolic calcium and limited, possible dual, effects of G protein modulators on guard cell inward potassium channels. Plant J, 1995, 8:479-489.
[37] Ichida A M, Schroeder J I. Increased resistance to extracellular cation block by mutation of the pore domain of the Arabidopsis inward-rectifying K+ channel KAT1. J Membrane Biol, 1996, 151:53-62.
[38] Hartje S, Zimmermann S, Klonus D, et al. Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta, 2000, 210: 723-731.
[39] Qi Z, Hampton C R, Shin R, et al. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J Exp Bot, 2008, 59 (3): 595-607.
[40] Hoth S, Geiger D, Becker D, et al. The pore of plant K+ channel is involved in voltage and pH sensing: domain-swapping between different K+ channel α-subunits. Plant Cell, 2001, 13:943-952.
[41] Tang X D, Marten I, Dietrich P, et al. Histidine 118 in the S2-S3 linker specifically controls activation of the KAT1 channel expressed in Xenopus oocytes. Biophys J, 2000, 78:1255-1269.
[42] Hoth S, Hedrich R. Distinct molecular bases for pH sensitivity of the guard cell K+ channels KST1 and KAT1. J Biol Chem, 1999, 274:11599-11603.
[43] Ache P, Becker D, Deeken R, et al. VFK1, a Vicia faba K+ channel involved in phloem unloading. Plant J, 2001, 27:571-580.
[44] Langer K, Ache P, Geiger D, et al. Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis. Plant J, 2002, 32:997-1009.
[45] Ache P, Becker D, Ivashikina N, et al. GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Lett, 2000, 486:93-98.
[46] Su Y H, North H, Grignon C, et al. Regulation by external K+ in a maize inward shaker channel targets transport activity in the high concentration range. Plant Cell, 2005, 17:1532-1548.
[47] Zhang Y D, Véry A A, Wang L M, et al. A K+ channel from salt-tolerant melon inhibited by Na+. New Phytologist, 2011, 189(3): 856-868.
[48] Pilot G, Lacombe B, Gaymard F, et al. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem, 2001, 276: 3215-3221.
[1] LIU Xu-xia,YANG An-ke. An Analysis of the U.S. SECURE Rule and Its Enlightenment to China[J]. China Biotechnology, 2021, 41(9): 126-135.
[2] YAN Yu-jia,ZOU Ling. Research Progress on the Biogenesis and Function of piRNAs[J]. China Biotechnology, 2021, 41(5): 45-50.
[3] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[4] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[5] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[6] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[7] YU Guang-hai, PENG Hai-fen, WANG Ao-yu. Research Progress of Avilamycin Biosynthesis[J]. China Biotechnology, 2021, 41(1): 94-102.
[8] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[9] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[10] GAO Xiao-peng,HE Meng-chao,XU Ke,LI Chun. Research Progress on pH Regulation in the Process of Industrial Microbial Fermentation[J]. China Biotechnology, 2020, 40(6): 93-99.
[11] MAO Hui,LV Yu-hua,ZHU Li-hui,LIN Yue-xia,LIAO Rong-rong. The Role of Exosomes in the Diagnosis and Treatment of Viral Infection[J]. China Biotechnology, 2020, 40(3): 104-110.
[12] LI Yu,ZHANG Xiao. The Experience and Enlightenment of Cell Therapy Regulation Dual-track System in Japan[J]. China Biotechnology, 2020, 40(1-2): 174-179.
[13] Jing REN,Wan-nong ZOU,Min SONG. Research on the Changing Trend of the New Pattern of International Seed Industry Competition Formed by the Merger of Multinational Seed Industry Companies——Take Intellectual Property as an Example[J]. China Biotechnology, 2019, 39(7): 108-117.
[14] Kai-xi JI,Dan JIAO,Zhong-kui XIE,Guo YANG,Zi-yuan DUAN. Advances and Prospects of Brown Adipocyte-Specific Gene PRDM16[J]. China Biotechnology, 2019, 39(4): 84-93.
[15] MA Ya-ting,LIU Zhen-ning,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Advances in Production of Plant Isoquinoline Alkaloids in Heterologous Microbes[J]. China Biotechnology, 2019, 39(11): 123-131.