Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (09): 70-75    DOI:
    
Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology
YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun
College of Life Science, Northwest Normal University, Lanzhou 730070, China
Download: HTML   PDF(774KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Response surface methodology was adopted to optimize the mixotrophic culture medium composition for biomass production. In the first optimization step, KNO3, glucose and NaCl were screened from eleven related nutrients as the major factors influence the mixotrophic growth of Chlorella vulgaris significantly using Plackett-Burman design. Subsequently, quadratic regression equation model was established based on the Box-Behnken design, and the optimized nutrients contents were that KNO3 was 1.64g/L, glucose was 45g/L and NaCl was 1.57g/L. The predicted maximum biomass content of 5.28g/L was obtained from the model, and the actual validation value was 5.68g/L. The validation results indicated that the model can be used to optimize the mixotrophic culture medium of C. vulgaris for its high prediction accuracy. Under the optimum conditions, the biochemical composition of mixotrophic C. vulgaris displayed that the protein and total pigments content were reduced and the soluble carbohdyrate and lipid content were increased, compared with the un-optimized algal biomass. The major fatty acids of the alga lipid were oleic acid and palmitic acid. The results from biochemical composition analysis suggested that the mixotrophic biomass of C. vulgaris can be used as a potential feedstock for microalgae biofuel production.

Key wordsChlorella vulgaris      Response surface methodology      Mixotrophism      Culture medium composition      Biomass     
Received: 07 March 2012      Published: 25 September 2012
ZTFLH:  Q819  
Cite this article:

YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology. China Biotechnology, 2012, 32(09): 70-75.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I09/70

[1] 夏金兰, 万民熙, 王润民, 等. 微藻生物柴油的现状与进展. 中国生物工程杂志, 2009, 29 (7): 118-126. Xia J L. Wan M X, Wang R M, et al. Current status and progress of microalgal biodiesel.China Biotechnology, 2009, 29 (7): 118-126.
[2] Brennan L, Owende P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustainable Energy Reviews, 2010, 14 (2): 557-577.
[3] Borowitzka M A. Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology, 1999, 70 (1-3): 313-321.
[4] 郑洪立, 张齐, 马小琛, 等. 产生物柴油微藻培养研究进展. 中国生物工程杂志, 2009, 29 (3): 110-116. Zheng H L, Zhang Q, Ma X C, et al. Research progress on bio-diesel-producing microalgal cultivation.China Biotechnology, 2009, 29 (3): 110-116.
[5] Andrade M R, Costa J A V. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 2007, 264 (1-4): 130-134.
[6] 金传荫, 宋立荣, 黎尚豪. 鱼腥藻1017株的混合营养型生长. 水生生物学报, 1996, 20 (2): 134-137. Jin Z Y, Song L R, Li S H. The mixotrophic growth of Anabaena sp. HB1017.Acta Hydrobiologica Sinica, 1996, 20 (2): 134-137.
[7] 张义明, 陈峰, 郭祀远. 光照度及葡萄糖浓度对螺旋藻生长的影响. 华南理工大学学报, 1996, 24 (2): 145-150. Zhang Y M, Chen F, Guo S Y. The effects of light intensity and glucose concentration on growth of Spirulina platensis.Journal of South China University of Technology, 1996, 24 (2): 145-150.
[8] 刘娟妮, 胡萍, 姚领, 等. 微藻培养中光生物反应器的研究进展. 食品科学, 2006, 27 (12): 772-777. Liu J N, Hu P, Yao L, et al. Research progress of photobioreactor on microalgal cultivation. Food Science, 2006, 27 (12): 772-777.
[9] Heredia-Arroyo T, Wei W, Ruan R, et al. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy, 2011, 35 (5): 2245-2253.
[10] 郑洪立, 高振, 黄和, 等. 响应面法优化自养小球藻产生物柴油油脂. 中国生物工程杂志, 2010, 30 (8): 106-111. Zheng H L, Gang Z, Huang H, et al. Optimization of autotrophic cultivation of lipids production for biodiesel by Chlorella vulgaris with response surface methodology.China Biotechnology, 2010, 30 (8): 106-111.
[11] 王学奎. 植物生理生化实验原理和技术.第2版, 北京: 高等教育出版社, 2006.5. Wang X K. Experimental Principle and Technology on Physiology and Biochemistry of Plant. 2nd ed,Beijing: Higher Education Press, 2006.5.
[12] GB/T 17376-2008, 动植物油脂脂肪酸甲酯制备. 北京: 中国标准出版社, 2008,1-22. GB/T 17376-2008, Animal and Vegetable Fats and Oils-Preparation of Methyl Esters of Fatty Acids. Beijing: China Standards Press, 2008,1-22.
[13] Orús M I, Marco E, Martínez F. Suitability of Chlorella vulgaris UAM 101 for heterotrophic biomass production. Bioresource Technology, 1991, 38 (2-3): 179-184.
[14] Meng X, Yang J, Xu X, et al. Biodiesel production from oleaginous microorganisms. Renewable Energy, 2009, 34 (1): 1-5.
[1] Zhi-jin WEI,Xiao LI,Hao-nan WANG,Yong-hao YIN,Li-jun XI,Bao-sheng GE. Enhanced Biomass Production and Lipid Accumulation by Co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp.[J]. China Biotechnology, 2019, 39(7): 56-64.
[2] Meng-tong QIN,Jing HU,Guan-hua LI. Recent Developments and Future Prospect of Biological Pretreatment[J]. China Biotechnology, 2018, 38(5): 85-91.
[3] YANG Kai, ZHAN Jing-ming, GAO Fen-fang, WU Bao-li, SU Li-xia, ZHOU Wen-ming, XUE Xiang-ming, HAO Jie, ZHAO Yang. Research of Chlorella on the Production of Biodiesel[J]. China Biotechnology, 2015, 35(11): 99-104.
[4] LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium[J]. China Biotechnology, 2014, 34(8): 61-66.
[5] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.
[6] LI Xie-kun, ZHOU Wei-zheng, GUO Ying, WU Hao, XU Jing-liang, YUAN Zhen-hong. Research Progress on Bioethanol Production with Microalgae as Feedstocks[J]. China Biotechnology, 2014, 34(5): 92-99.
[7] LI Lan, WANG Ze-Jian, JIN Yong, SUN Wen-hua, ZHUANG Ying-ping, ZHANG Si-liang. Study on On-line Capacitance Measurement to Evaluate the Viable Biomass During the Fermentation of Pichia[J]. China Biotechnology, 2014, 34(3): 91-95.
[8] LIU Ai-jun, SHI Shou-kun, LI Lan, WANG Ping, WANG Wei, JIA Jun-qiao, WANG Ze-jian, LI Hai-dong, ZHUANG Ying-ping, ZHANG Si-liang. Studies on the Measurement of Viable Biomass in the Optimization of Rifamycins SV Fermentation Process[J]. China Biotechnology, 2014, 34(10): 73-78.
[9] ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology[J]. China Biotechnology, 2013, 33(8): 105-110.
[10] WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology[J]. China Biotechnology, 2013, 33(7): 71-81.
[11] ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis[J]. China Biotechnology, 2013, 33(6): 79-85.
[12] WANG Gui-lin, GUI Xiao-hua, DENG Wei, ZHAO Zhi-liang, YAO Jie, YAN Yun-jun. Two Step Cultivation Mode with “Heterotrophy-stress” for Chlorella Protothecoides Biomass and Lipid Content[J]. China Biotechnology, 2013, 33(3): 99-104.
[13] LIU Hua-qing, LI Hao. Research Progress on Prevention and Controlling of Bacterial Contamination in Biomass Fermentation[J]. China Biotechnology, 2013, 33(12): 114-120.
[14] WU Wei-ping, CHEN Jie, LI Ya-qian, CHEN Li-jie, DUAN Yu-xi. Optimization of Fermentation Process for Chlamydospores of Trichoderma asperellum by Response Surface Methodology[J]. China Biotechnology, 2013, 33(12): 97-104.
[15] ZHANG Wen, ZHANG Shu-qing, MA Xiao-tong, HE Cui-cui. The Optimization Research of Fermentation Medium of γ-Polyglutamic Acid(γ-PGA) Produced by Bacillus natto[J]. China Biotechnology, 2013, 33(11): 44-50.