Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (09): 118-124    DOI:
    
The Advance of Research on the Butanol Tolerance of Clostridium acetobutylicum
MAO Shao-ming, ZHANG Huai-yun
Forestry Biotechnology Hunan Key Laboratories, Central South University of Forestry and Technology, Changsha 410004, China
Download: HTML   PDF(431KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The accumulation of butanol in fermentation medium is the major barrier for production of butanol. Currently, system research was lack for adaptation to butanol stress of Clostridium acetobutylicum. The biological mechanism on butanol tolerance is rather complex and remains largely unknown. Recent literatures were retrospectively analyzed to further understand the molecular mechanism of butanol tolerance, and will provide new research clues for modifying the molecular mechanism of butanol tolerance and/or enhanced butanol tolerance.

Key wordsClostridium acetobutylicum      Butanol tolerance      Molecular mechanism     
Received: 09 April 2012      Published: 25 September 2012
ZTFLH:  Q936  
Cite this article:

MAO Shao-ming, ZHANG Huai-yun. The Advance of Research on the Butanol Tolerance of Clostridium acetobutylicum. China Biotechnology, 2012, 32(09): 118-124.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I09/118

[1] Zhu L, Dong H, Zhang Y, et al. Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab Eng, 2011, 13(4):426-434.
[2] Keiski V G, Päkkilä J, Ojamo H, et al. Challenges in biobutanol production: How to improve the efficiency? Renewable and Sustainable Energy Reviews, 2011, 15(2):964-980.
[3] Ezeji T C, Qureshi N, Blaschek H P. Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol, 2007, 18(3):220-227.
[4] Liu S, Qureshi N. How microbes tolerate ethanol and butanol. N Biotechnol, 2009, 26(3-4):117-121.
[5] Ezeji T C, Qureshi N, Blaschek H P. Butanol fermentation research: upstream and downstream manipulations. The Chemical Record, 2004, 4(5):305-314.
[6] Ezeji T, Milne C, Price N D, et al. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol, 2010, 85(6):1697-1712.
[7] Jia K, Zhang Y, Li Y. Systematic engineering of microorganisms to improve alcohol tolerance. Eng Life Sci, 2010, 10(5):422-429.
[8] 董红军, 张延平, 李寅. 丙酮丁醇梭菌的遗传操作系统. 生物工程学报, 2010, 26(10):1372-1378. Dong H J, Zhang Y P, Li Y. Genetic modification systems for Clostridium acetobutylicum. Chinese Journal of Biotechology, 2010, 26(10): 1372-1378.
[9] Alsaker K V, Paredes C, Papoutsakis E T. Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng, 2010, 105(6):1131-1147.
[10] Baek K T, Vegge C S, Skorko-Glonek J, et al. Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology. Appl Environ Microbiol, 2011, 77(1):57-66.
[11] Tomas C A, Welker N E, Papoutsakis E T. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl Environ Microbiol, 2003, 69(8):4951-4965.
[12] Alsaker K V, Spitzer T R, Papoutsakis E T. Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress. J Bacteriol, 2004, 186(7):1959-1971.
[13] Mao S M, Luo Y A M, Zhang T R, et al. Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res, 2010, 9(6):3046-3061.
[14] Lee J, Yun H, Feist A M, et al. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol, 2008, 80(5):849-862.
[15] Jones D T, Woods D R. Acetone-butanol fermentation revisited. Microbiol Rev, 1986, 50(4):484-524.
[16] Ounine K, Petitdemange H, Raval G, et al. Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum. Appl Environ Microbiol, 1985, 49(4):874-878.
[17] Costa J M, Moreira A R. Growth-inhibition kinetics for the acetone-butanol fermentation. ACS Symp Ser, 1983, 207:501-512.
[18] Vollherbst-Schneck K, Sands J A, Montenecourt B S. Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol, 1984, 47(1):193-194.
[19] Gottwald M, Gottschalk G. The internal-pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Arch Microbiol, 1985, 143(1):42-46.
[20] Moreira A R, Ulmer D C, Linden J C. Butanol Toxicity in the Butylic Fermentation. Biotechnol Bioeng, 1981:567-579.
[21] Bowles L K, Ellefson W L. Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol, 1985, 50(5):1165-1170.
[22] Barber J M, Robb F T, Webster J R, et al. Bacteriocin production by Clostridium acetobutylicumin an industrial fermentation process. Appl Environ Microbiol, 1979, 37(3):433-437.
[23] Allcock E R, Reid S J, Jones D T, et al. Autolytic activity and an autolysis-deficient mutant of Clostridium acetobutylicum. Appl Environ Microbiol, 1981, 42(6):929-935.
[24] Terracciano J S, Rapaport E, Kashket E R. Stress-and growth phase-associated proteins of Clostridium acetobutylicum. Appl Environ Microbiol, 1988, 54(8):1989-1995.
[25] Heipieper H J, Neumann G, Cornelissen S, et al. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol, 2007, 74(5):961-973.
[26] Heipieper H J, Meulenbeld G, van Oirschot Q, et al. Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in pseudomonas putida S12. Appl Environ Microbiol, 1996, 62(8):2773-2777.
[27] Baer S H, Blaschek H P, Smith T L. Effect of butanol challenge and temperature on lipid-composition and membrane fluidity of butanol-tolerant Clostridium-Acetobutylicum. Appl Environ Microbiol, 1987, 53(12):2854-2861.
[28] Baer S H, Blaschek H P, Smith T L. Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol, 1987, 53(12):2854-2861.
[29] Zhao Y S, Hindorff L A, Chuang A, et al. Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol, 2003, 69(5):2831-2841.
[30] Tomas C A, Beamish J, Papoutsakis E T. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol, 2004, 186(7):2006-2018.
[31] Harris L M, Welker N E, Papoutsakis E T. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol, 2002, 184(13):3586-3597.
[32] Borden J R, Papoutsakis E T. Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol, 2007, 73(9):3061-3068.
[33] Nolling J, Breton G, Omelchenko M V, et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol, 2001, 183(16):4823-4838.
[34] Bao G, Wang R, Zhu Y, et al. Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture. J Bacteriol, 2011, 193(18):5007-5008.
[35] Hu S, Zheng H, Gu Y, et al. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018. BMC Genomics, 2011, 12(1):93.
[36] Lin Y L, Blaschek H P. Butanol production by a butanol-tolerant strain ofClostridium acetobutylicum in extruded corn broth. Appl Environ Microbiol, 1983, 45(3):966-973.
[37] Harris L M, Desai R P, Welker N E, et al. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng, 2000, 67(1):1-11.
[38] Harris L M, Blank L, Desai R P, et al. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol, 2001, 27(5):322-328.
[39] Soucaille P, Joliff G, Izard A, et al. Butanol tolerance and autobacteriocin production by Clostridium acetobutylicum. Curr Microbiol, 1987, 14(5):295-299.
[40] Hermann M, Fayolle F, Marchal R, et al. Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol, 1985, 50(5):1238-1243.
[41] Annous B A, Blaschek H P. Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl Environ Microbiol, 1991, 57(9):2544-2548.
[42] Formanek J, Mackie R, Blaschek H P. Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microbiol, 1997, 63(6):2306-2310.
[43] Green E M, Bennett G N. Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Appl Biochem Biotechnol, 1996, 57-58, 213-221.
[44] Bermejo L L, Welker N E, Papoutsakis E T. Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol, 1998, 64(3):1079-1085.
[45] Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 2008, 451(7174):86-89.
[46] Steen E J, Chan R, Prasad N, et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact, 2008, 7:36.
[47] Knoshaug E P, Zhang M. Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol, 2009, 153(1-3):13-20.
[48] Rogers P. Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Adv. Appl. Microbiol., 1986, 31:1-60.
[49] Evans P J, Wang H Y. Enhancement of butanol formation by Clostridium acetobutylicum in the presence of decanol-oleyl alcohol mixed extractants. Appl Environ Microbiol, 1988, 54(7):1662-1667.
[50] Qureshi N, Maddox I S, Friedl A. Application of continuous substrate feeding to the ABE fermentation: relief of product inhibition using extraction, perstraction, stripping, and pervaporation. Biotechnol Prog, 1992, 8(5):382-390.
[51] Ezeji T, Qureshi N, Blaschek H. Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol, 2003, 19(6):595-603.
[1] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[2] Shuang-shuang LIU,Suo-wei WU,Li-qun RAO,Xiang-yuan WAN. Molecular Mechanism and Application Analysis of Genic Male Sterility in Maize[J]. China Biotechnology, 2018, 38(1): 100-107.
[3] LI Sheng. The Induction Effect of Metal Ions for Cell Autophagy[J]. China Biotechnology, 2017, 37(7): 124-132.
[4] WANG Hao, ZHANG Jing-shu, DING Jian, LUO Hong-zhen, CHEN Rui, SHI Zhong-ping. Control of Acetone Concentration and Acetone/Butanol Ratio in ABE Fermentation by C. acetobutylicum with a Novel Glucose/Acetate Co-substrate System Incorporating Glucose Limitation[J]. China Biotechnology, 2016, 36(10): 60-71.
[5] YIN Shou-liang, ZHANG Yu-xiu, ZHANG Qi, DOU Meng-nan, YANG Ke-qian. The Effect of Inorganic Phosphate on the Biosynthesis of Secondary Metabolites in Streptomyces[J]. China Biotechnology, 2015, 35(9): 105-113.
[6] LIN Jun-han, QIU Dong-feng, LIN Chen. Development in Breeding of Butanol Producing Strain[J]. China Biotechnology, 2014, 34(12): 118-128.