Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (08): 30-35    DOI:
    
Abiotic Stress Tolerance Analysis Two Alternatively Spliced Isoforms of LEA3 Gene from Pogonatherum paniceum in Yeast
LI Rui1, WANG Wen-guo2, FAN Lin-hong1, WANG Sheng-hua 1
1. College of Life Sciences, Sichuan University, Department of Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu 610064, China;
2. Research Centre of Biomass Energy Technology, Biogas Institute of Ministry of Agriculture,Chengdu 610041, China
Download: HTML   PDF(641KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  It was to analyze the sequence of Pogonatherum paniceum group 3 LEA proteins alternatively spliced isoforms, and to detect the abiotic stresses tolerance of PpLEA3 spliced isoforms. The two spliced isoforms of PpLEA3 gene were amplified by PCR reaction using the plasmids pMD19-T- PpLEA3.a and pMD19-T- PpLEA3.b as the templates, respectively. The yeast expression plasmid of pYES2- PpLEA3.a and pYES2- PpLEA3.b was constructed and then transformed into yeast to create recombinant INV- PpLEA3.a and INV- PpLEA3.b . Stress tolerance tests showed that LEA3 yeast transformants exhibited a higher survival rates than the control transformants under salt (NaCl), NaHCO3, freezing, drought and ultraviolet radiation. PpLEA3.a has stronger abiotic stresses tolerance than PpLEA3.b . The nucleic acid sequence of two splicing isoforms have different protein hydrophilicity and structure which leading to differences in the stress tolerance.

Key words LEA3gene      Pogonatherum paniceum      Alternative splicing      Transgenic yeast      Abiotic stress     
Received: 13 March 2012      Published: 25 August 2012
ZTFLH:  Q819  
Cite this article:

LI Rui, WANG Wen-guo, FAN Lin-hong, WANG Sheng-hua. Abiotic Stress Tolerance Analysis Two Alternatively Spliced Isoforms of LEA3 Gene from Pogonatherum paniceum in Yeast. China Biotechnology, 2012, 32(08): 30-35.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I08/30

[1] Ast G. How did alternative splicing evolve? Nature Reviews Genetics, 2004,5:773-782.
[2] Tazi J, Bakkour N Stamm. Alternative splicing and disease. Biochimica et Biophysica Acta-Molecular Basis of Disease, 2009,1792 (1):14-26.
[3] Dircksen H. Insect ion transport peptides are derived from alternatively spliced genes and differentially expressed in the central and peripheral nervous system. Journal of Experimental Biology, 2009,212(3):401-412.
[4] 曾纪晴, 张明永. 可变剪接在植物逆境相关基因表达调控中的作用. 植物生理学通讯, 2006,42(6):1005-1014. Zeng J Q, Zhang M Y. The role of alternative splicing in the regulation of plant stress-associated gene expression. Plant Physiology Communications, 2006,42(6):1005-1014.
[5] Dure L. A repeating 11-mer amino acid motif and plant desiccation. Plant J, 1993,3:363-369.
[6] Garay-Arroyo A, Colmenero-Flores J M, Garciarrubio A, et al. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem, 2000,275:5668-5674.
[7] Wise M J, Tunnacliffe A. POPP the question: what do LEA proteins do? Trends Plant Sci, 2004,9:13-17.
[8] Wise M J, LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform, 2003,4:52.
[9] Liu Y, Zheng Y. PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun, 2005,331:325-332.
[10] Tunnacliffe A, Wise M J. The continuing conundrum of the LEA proteins. Naturwissenschaften, 2007,94:791-812.
[11] Gellissen G, Melber K, Janowicz Z A, et al. Heterologous protein production in yeast.Anton Van Leeuwenhock, 1992,62:79-93.
[12] 王文国. 金发草LEA3基因与水稻Rad9基因的选择性剪接与基因功能研究. 成都:四川大学,生命科学学院,2010. Wang W G. Alternative splicing and gene functional analysis of LEA3 gene in Pogonatherum paniceum and Rad9 gene in rice. Chengdu:Sichuan University, College of Life Science, 2010.
[13] 邓成菊, 张建斌, 贾彩红, 等. 香蕉乙二醛酶基因增强酿酒酵母对非生物胁迫抵抗能力的研究. 中国生物工程杂志, 2010, 30(8):22-26. Deng C J, Zhang J B, Jia C H, et al. Enhancement of tolerance to abiotic stress of Saccharomyces cerevisiae transformed by a gene encoding glyoxalase from banana. China Biotechnology, 2010,30(8):22-26.
[14] Ginger A S, William R, Marcotte J. The wheat LEA protein Em function as an osmoprotective molecule Sacharomyces cerevisiae. Plant Mol Biol, 1999, 39(1):117-128.
[15] Gal Z T, Glazer I, Koltai H. An LEA group 3 family member is survival of C. elegans during exposure to stress. FEBS Lett, 2004, 577:21-26.
[16] 汤晓倩, 于丽霞, 武晓璐, 等. 第三组胚胎晚期丰富蛋白lea3基因研究概述. 生命科学, 2010,22(6):551-555. Tang X Q, Yu L X, Wu X L, et al. Research advance in the group three of late-embryogenesis-abundant proteins and genes. Chinese Bulletin of Life Sciences, 2010,22(6):551-555.
[17] Wang B F, Wang Y C, Zhang D W, et al. Verification of the resistance of a LEA gene from Tamarix expression in Saccharomyces cerevisiae to abiotic stresses. Journal of Forestry Research, 2008,19(1):58-62.
[18] 郭小勤, 李德葆.植物前体mRNA的选择性剪接.农业生物技术学报,2006,14(5):809-815. Guo X Q, Li D B. Pre-mRNA alternative splicing in plants. Journal of Agriculture Biotechnology,2006,14(5):809-815.
[1] ZHANG Xue, TAO Lei, QIAO Sheng, DU Bing-hao, GUO Chang-hong. Roles of Glutathione S-transferase in Plant Tolerance to Abiotic Stresses[J]. China Biotechnology, 2017, 37(3): 92-98.
[2] YU Xiu-min, YUE Wen-ran, ZHANG Yan-na, YANG Fei-yun, WANG Rui-gang, LI Guo-jing, YANG Qi. Heterologous of CkLEA1 Gene Enhanced Tolerance to Abiotic Stress in Arabidopsis[J]. China Biotechnology, 2016, 36(10): 28-34.
[3] GAO Fei, ZHOU Jing, LIU Xiao-tong, LI Cheng-lei, YAO Hui-peng, ZHAO Hai-xia, WU Qi . Cloning and Expression Analysis One Zinc Finger Protein Gene FtLOL1 in Fagopyrum tataricum: Effect of Abiotic Stress[J]. China Biotechnology, 2015, 35(8): 44-50.
[4] LI Mei-yu, LI Rui, YU Min, WANG Sheng-hua, CHEN Fang. Optimization of Genetic Transformation Conditions in Pogonatherum paniceum Mediated by Agrobactrium tumefaciens[J]. China Biotechnology, 2013, 33(1): 41-46.
[5] . Expression Profile Analysis of Rice Heat Shock Transcription Factor (HSF) Genes in Response to Plant Hormones and Abiotic Stresses[J]. China Biotechnology, 2010, 30(10): 0-0.
[6] WAN Bing-liang, ZHA Zhong-ping, DU Xue-shu. Expression Profile Analysis of Rice Heat Shock Transcription Factor (HSF) Genes in Response to Plant Hormones and Abiotic Stresses[J]. China Biotechnology, 2010, 30(10): 22-32.
[7] DENG Cheng-Ju, ZHANG Jian-Bin, GU Cai-Gong, JIN Zhi-Jiang, XU Bi-Yu. Enhancement of Tolerance to Abiotic Stress of Saccharomyces cerevisiae Transformed by a Gene Encoding Glyoxalase from Banana[J]. China Biotechnology, 2010, 30(08): 22-26.
[8] HU Fa-Chi, LIU Cui-Fang, JU Jie, WANG Yo-Hua, LI Wei, CHEN Shen-Bei. Research Progress in Plant Cuticle Responses to Abiotic Stresses[J]. China Biotechnology, 2010, 30(08): 126-130.
[9] . Advances in Research on Tumor Protein D52 Family[J]. China Biotechnology, 2007, 27(5): 120-124.