Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (08): 100-106    DOI:
    
The Antibiotic Metabolites Genes of Pseudomonas fluorescens
YANG Yi, LI Zhi, GAO Ling-xia, SUN Yan
College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
Download: HTML   PDF(564KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Pseudomonas fluorescens is an important kind of plant growth-promoting rhizobacteria (PGPR). It can produce many secondary metabolites, such as pyoluteorin, 2, 4-diacetylphloroglucinol, pyrrolnitrin and phenazine-1-carboxyl acid. These antibiotics play a major role in suppression of many pathogens.The synthesis mechanisms of the secondary metabolites in Pseudomonas fluorescens, especially the structures and functions of the related genes were summarized. At the same time, the applications of Pseudomonas fluorescens in biological control are presented.

Key wordsPlant growth promoting rhizobacteria (PGPR)      Antibiotic metabolites      Pseudomonas fluorescens      Functional genes      Biological control     
Received: 23 March 2012      Published: 25 August 2012
ZTFLH:  Q819  
Cite this article:

YANG Yi, LI Zhi, GAO Ling-xia, SUN Yan. The Antibiotic Metabolites Genes of Pseudomonas fluorescens. China Biotechnology, 2012, 32(08): 100-106.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I08/100

[1] 陈雪,赵克明. 土传病害生物防治微生物的研究进展.现代农业,2011,7: 34-35. Chen X, Zhao K M. Progress in studies on biological control of soil mediated diseases. Modern Agriculture, 2011, 7: 34-35.
[2] 胡燕梅,杨龙. 利用微生物防治植物病害的研究进展. 中国生物防治,2006,22(增刊): 190-193. Hu Y M, Yang L. Biological control of plant pathogens with microorganism. Chinese Journal of Biological Control, 2006, 22: 190-193.
[3] 荣良燕,姚拓,赵桂琴,等. 产铁载体PGPR菌筛选及其对病原菌的拮抗作用. 植物保护,2011,3(1): 59-64. Rong L Y, Yao T, Zhao G Q,et al. Screening of siderophore-producing PGPR bacteria and their antagonism against the pathogens. Plant Protection, 2011, 3(1): 59-64.
[4] 殷士学,康贻军,程洁,等. 植物根际促生菌作用机制研究进展. 应用生态学报,2010, 21(1): 232-238. Yin S X, Kang Y J, Cheng J,et al. Action mechanisms of plant growth-promoting rhizobacteria. Chinese Journal of Applied Ecology, 2010, 21(1): 232-238.
[5] 杨海君,谭周进,肖启明,等. 假单胞菌的生物防治作用研究. 中国生态农业学报,2004,12(3): 158-161. Yang H J, Tan Z J, Xiao Q M, et al. Biocontrol functions of Pseudomonad. Chinese Journal of Eco-Agriculture, 2004, 12(3): 158-161.
[6] Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Microbiology, 2005, 3(4):307-319.
[7] 张伟琼,聂明,肖明. 荧光假单胞菌生防机理的研究进展. 生物学杂志,2007,6(3): 9-11. Zhang W Q, Nie M, Xiao M. Advances in biocontrolmechanism of Pseudomonas fluorescens. Journal of Biology, 2007, 6(3): 9-11.
[8] 王平,李慧,肖明,等. 荧光假单胞菌株P13分泌铁载体抑制油菜菌核病菌. 上海师范大学学报(自然科学版),2010,39(2): 200-203. Wang P, Li H, Xiao M, et al. Siderophores produced by Pseudomonas fluorescens P13 against Sclerotinia sclerotiorum. Journal of Shanghai Normal University, 2010, 39(2): 200-203.
[9] 周洪友,张俊祥,唐文华,等. 2,4-二乙酰基藤黄酚产生菌在番茄根部的定殖及对番茄青枯病的防治. 华北农学报,2004,19(4): 105-108. Zhou H Y, Zhang J X, Tang W H, et al. Preliminary exploration of bacteria that produce 2, 4-DAPG colonize the rhizoplance and control the tomato southern bacterial wilt. Journal of North China Agriculture, 2004, 19(4): 105-108.
[10] Ramette1 A, Moenne-Loccoz Y, Defago G, et al. Geneticdiversityand biocontrol potential of fluorescent pseudomonads producing phloroglucinolsand hydrogen cyanide from Swis soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black rootrot of tobacco. FEMS Microbiol Ecol, 2006, 55(3): 369-381.
[11] 雷阳,曾延松,汪琳. 荧光假单胞菌的生物防治机理. 贵州农业科学,2002,30(5): 46-47. Lei Y, Zeng Y S, Wang L. Biological control mechanism of Pseudomonas fluorescent. Guizhou Agricultural Sciences, 2002, 30(5): 46-47.
[12] 何延静,胡洪波,许煜泉,等. 新型生物农药藤黄绿脓菌素. 农药,2006,45(3): 155-157. He Y J, Hu H B, Xu Y Q, et al. A new biological pesticide, Pyoluteorin. Agrochemicals, 2006, 45(3): 155-157.
[13] Zhang J F, Wang W, Lu X H, et al. The stability and degradation of a new biological pesticide, pyoluteorin. Society of Chemical Industry, 2010, 66(3): 248-252.
[14] Whistler C A, Stockwell V O, Loper J E. Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl Environ Microbiol, 2000, 66(7): 2718-2725.
[15] Nowak-Thompson B, Chaney N, Wing J S, et al. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol, 1999, 181(7): 2166-2174.
[16] Susanl F, Halbrendt J M, Carta L K, et al. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. Journal of Nematology, 2009, 41(4): 274-280.
[17] Latz E, Rall B C, Scheu S, et al. Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. Journal of Ecology, 2011, 184(11): 3008-3016.
[18] Yang F, Cao Y J. Biosynthesis of phloroglucinol compounds in microorganisms. Appl Microbiol Biotechnol, 2012, 93(2): 487-495.
[19] Dandurishvili N, Toklikishvili N, Ovadis M, et al. Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. Journal of Applied Microbiology, 2011, 110(1): 341-352.
[20] Hammer P E, Hill D S, Lam S T, et al. Four Genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Applied and Environmental Microbiology, 1997, 63(6): 2147-2154.
[21] Kirner S, Hammer P E, Hill D S, et al. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. Journal of Bacteriology, 1998, 180(7): 1939-1943.
[22] Keum Y S, Zhu Y Z, Kim J H. Structure-inhibitory activity relationships of pyrrolnitrin analogues on its biosynthesis. Applied Microbiology and Biotechnology, 2011, 89(3): 781-789.
[23] Mavrodi D V, Ksenzenko V N, Bonsall R F, et al. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol, 1998, 180(9):2541-2548.
[24] McDonald M, Mavrodi D V, Thomashow L S, et al. Phenazine biosynthesis in Pseudomonas fluorescens:branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J Am Chem, 2001, 123(38): 9459-9460.
[25] El-Sayed A K, Hothersall J, Cooper S M, et al. Characterization of the mupirocin biosynthesis gene cluster from Pseudomonas fluorescens NCIMB 10586. Chemistry & Biology, 2003, 10(5): 419-430.
[26] Gurney R, Thomas C M. Mupirocin: biosynthesis, special features and applications of an antibiotic from a gram-negative bacterium. Appl Microbiol Biotechnol, 2011, 90(1): 11-21.
[27] Mercado-Blanco J, van der Drift K M, Olsson P E, et al. Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore Pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. Journal of Bacteriology, 2001, 183(6): 1909-1920.
[28] Youard Z A, Mislin G L, Majcherczyk P A, et al. Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. Journal of Biological Chemistry, 2007, 282(49): 35546-35553.
[29] Youard Z A, Wenner N, Reimmann C. Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species. Biometals, 2011, 24(3): 513-522.
[30] Moon C D, Zhang X X, Matthijs S, et al. Genomic, genetic and structural analysis of overdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. BMC Microbiology, 2008, 8(7): 1-13.
[31] Lamont I L, Martin L W. Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology, 2003, 149(Pt4): 833-842.
[32] Laville J, Blumer C, Von Schroetter C, et al. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J Bacteriol, 1998, 180(12): 3187-3196.
[33] 王震,何幸,许煜泉,等. 温度对假单胞rsmA突变株M-18R合成Plt和PCA的区别性影响. 生物工程学报,2005,21(1): 118-122. Wang Z, He X, Xu Y Q, et al. Differential effect of temperature on Plt and PCA synthesis in a rsmA inactivated mutant strain of Pseudomonas sp. M-18. Sheng Wu Gong Cheng Xue Bao, 2005, 21(1): 118-122.
[34] Bainton N J, Lynch J M, Naseby D, et al. Survival and ecological fitness of Pseudomonas fluorescens genetically engineered with dual biocontrol mechanisms. Microbiol Ecology, 2004, 48(3): 349-357.
[35] 周宇平,吴小刚,张力群,等. 荧光假单胞菌2P24中phlF基因对抗生素2, 4-二乙酰基间苯三酚产生的影响. 植物病理学报,2010,40(2) : 144-150. Zhou Y P,Wu X G, Zhang L Q, et al. Effect of gene phlF on 2, 4 -diacetylphloroglucinol production in Pseudomonas fluorescens 2P24. Acta Phytopathologica Sinica, 2010, 40(2) : 144-150.
[1] SUN Yao,QIAO Meng-wei,LIU Shi-yu,GONG Dian-liang,SONG Jin-zhu. Research Progress on the Inhibitory Effect of Lactobacillus on Pathogenic Pseudomonas[J]. China Biotechnology, 2021, 41(8): 103-109.
[2] CHEN Yong, ZHU Ting-heng, WANG Kun, CUI Zhi-feng. Advances in Engineering of Trichoderma for Improvement of Adaption to Adverse Environment and Efficiency of Biological Control Against Plant Pathogen[J]. China Biotechnology, 2012, 32(6): 120-124.
[3] LI Jing . Antifungal Substance from Biocontrol Bacillus subtilis B29 Strain[J]. China Biotechnology, 2008, 28(2): 59-65.
[4] . Prospect and Progress on Dunaliella salina in the area of Molecular Biology[J]. China Biotechnology, 2007, 27(10): 113-118.