Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (07): 8-15    DOI:
    
Effect of GALNT14 on the Migration of Human Breast Cancer Cells MCF-7
WU Chen, TIAN Huan-na, WANG Yuan-yuan, LIU Fang-ming, ZHANG Xiao-kang, LI Qin-jian, XIE Yuan-yuan
Life Science College, Hebei University, Baoding 071002, China
Download: HTML   PDF(916KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The recombinant plasmid—pcDNA 3.1-Flag-T14 was constructed and identified by restriction enzyme digestion and DNA sequencing. pcDNA 3.1-Flag-T14 was transfected into MCF-7 cells with lipofectamine 2000, and positive clones were selected by G418. The expression of GALNT14 in MCF-7 was tested by RT-PCR and Western blot. Wound healing assay and transwell migration assay were performed to detect migration activity. The effect of GALNT14 on the expression of MMP-2,MMP-9,TGF-β1and VEGF was measured by semi-quantitative RT-PCR. The result showed that pcDNA 3.1-Flag-T14 was successfully constructed and GALNT14 was expressed stably in MCF-7 cells. GALNT14 can promote the migration of MCF-7 cells. RT-PCR showed that GALNT14 also increased the expressions of MMP-2,MMP-9,TGF-β1and VEGF mRNA. In conclusion,GALNT14 can significantly improve the migration of MCF-7 cells and it might play an important role in the invasion and metastasis of tumor.

Key wordsGALNT14      Breast cancer      Stable transfection      Cell migration     
Received: 06 February 2012      Published: 25 July 2012
ZTFLH:  Q786  
Cite this article:

WU Chen, TIAN Huan-na, WANG Yuan-yuan, LIU Fang-ming, ZHANG Xiao-kang, LI Qin-jian, XIE Yuan-yuan. Effect of GALNT14 on the Migration of Human Breast Cancer Cells MCF-7. China Biotechnology, 2012, 32(07): 8-15.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I07/8

[1] Rottger S, White J, Wandall H, et al. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation through out the Golgi apparatus. Cell Sci,1998,111(1):45-60.
[2] Perrine C L,Ganguli A,Wu P,et al. Glycopeptide-preferring polypeptide GalNAc transferase 10 (ppGalNAc T10),involved in mucin-type O-glycosylatian,has a unique GalNAe-O-Ser/Thr-binding site in its catalytic domain not found in ppGalNAc T1 or T2.Journal of Biological Chemistry,2009,284(30):20387-20397.
[3] Pegram M D,Borges V F,lbrahim N,et a1.Phase I dose escalation pharmacokinetic mmessment of intravenous humanized anti-MUCl antibody ASl402 in patients with advanced breast cancer.Breast Cancer Rea,2009,11(5): R73.
[4] Hollingsworth M A, Swanson B J. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer, 2004, 4(1): 45-60.
[5] Shibao K, Izumi H, Nakayama Y, et al. Expression of UDP-N-acetyl-alpha-D-galactosamine-polypeptide galNAc N-acetylgalactosaminyl transferase-3 in relation to differentiation and prognosis in patients with colorectal carcinoma. Prevents. Cancer, 2002,94(7): 1939-1946.
[6] Berois N, Mazal D, Ubillos L, et al. UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-6 as a new immunohistochemical breast cancer marker.Cytochem, 2006, 54(3): 317-328.
[7] Park J H, Nishida te T, Kijima K, et al. Critical roles of mucin 1 glycosylation by transactivated polypeptide N-acetylgalactosaminyltransferase 6 in mammary carcinogenesis.Cancer Res, 2010, 70(7):2759-2769.
[8] 岳爱环, 行书丽, 唐春花, 等. N-乙酰氨基半乳糖转移酶2 对胃癌细胞SGC7901 黏附迁移能力的影响. 江苏大学学报(医学版),2008,18(3):223-226. Yue A H, Xing S L,Tang C H,et al. Polypeptide: N-acetylgalactosaminyltransferase 2’s role during adhesion and migration of gastric cancer cell SGC7901 at cell level.Journal of Jiangsu University(Medicine Edition), 2008,18(3):223-226.
[9] Wu Y M, Liu C H, Hu R H, et al. Mucin glycosylating enzyme GALNT2 regulates the malignant character of hepatocellular carcinoma by modifying the EGF receptor.Cancer Res,2011,71(23):7270-7279.
[10] Wang H, Tachibana K, Zhang Y,et al. Cloning and characterization of a novel UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, pp-GalNAc-T14. Biochem Biophys Res Commun, 2003, 300(3): 738-744.
[11] Wagner K W, Punnoose E A, Januario T,et al. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL.Nature Medicine,2007, 13(9):1070-1077.
[12] Stern H M, Padilla M, Wagner K, et al. Development of immunohistochemistry assays to assess GALNT14 and FUT3/6 in clinical trials of dulanermin and drozitumab. Clin Cancer Res,2010,16(5):1587-1596.
[13] Soria JC, Márk Z, Zatloukal P, et al. Randomized Phase II Study of Dulanermin in Combination With Paclitaxel, Carboplatin, and Bevacizumab in Advanced Non-Small-Cell Lung Cancer.J Clin Oncol, 2011,29(33):4442-4451.
[14] Wu, C Zou M J, Wang Y Y, et al. Prokaryotic expression, purification, and production of polyclonal antibody against human polypeptide N-acetylgalactosaminyltransferase 14.Protein Expression and Purification, 2007,56(1):1-7.
[15] Wu C, Guo X D, Wang W N, et al. UDP-N-Acetyl-D-Galactosamine: Polypeptide N-Acetylgalactosaminyltransferase-14 as a potential New Immunohistochemical Marker for Breast Cancer. BMC cancer, 2010,10:123.
[16] Hassan H, Reis C A,Bennett E P, et al. The lectin domain of UDP-N-acetyl-D-galactosamine: Polypep tide N-acetyl-galactosaminyltransferase-T4 directs its glycopep tide specificities. J Biol Chem, 2000,(49):38197-38205.
[17] Casey R C, Oegema T R, Skubitz K M, et al. Cell membrane glycosylation mediates the adhesion, migration, and invasion of ovarian carcinoma cell.Clin Exp Metastasis,2003, 20(2):143-152.
[18] Zeng Z S, Guillem J G. Unique activation of matrix metalloproteinase-9 within human liver metastasis from colorectal cancer. Br J Cancer,1998, 78(3):349-353.
[19] Reyes-Reyes M E, George M D, Roberts J D, et al. P-Selectin Activates Integrin-mediated Colon Carcinoma Cell Adhesion to Fibronectin.Exp Cell Res, 2006, 312(20):4056-4069.
[20] Ngan C Y, Yamamoto H, Seshimo I, et al. A multivariate analysis of adhesion molecules expression in assessment of colorectal cancer.J Surg Oncol, 2007,95(8):652-666.
[21] Zhang H, Meng F, Wu S, et al. Engagement of I-branching β-1, 6-N-acetylglucosaminyltransferase GCNT2 in Breast Cancer Metastasis and TGF-β signalling.Cancer Res, 2011,71(14):4846-4856.
[22] Raman J, Yu G, Cynthia L. UDP-N-Acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases: Completion of the Family Tree.Glycobiology,2011 Dec 20.
[23] Cheng L M, Kouichi T, Zhang Y,et al. Characterization of a novel human UDP-GalNAc transferase,pp-GalNAc-T10. FEBS Let,2002,531(2):115-121.
[24] 郭晓丹, 吴琛, 康现江. UDP—GalNAc:多肽N-乙酰氨基半乳糖转移酶-14.生命的化学,2010,30(1):27-32. Guo X D,Wu C,Kang X J. UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 14.Chemistry of Life, 2010, 30(1):27-32.
[25] Stetler-Stevenson W G.Type IV collagenases in tumor invasion and metastasis. Cancer M etastasis Rev,1990, 9( 4): 289-303.
[1] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[2] XU An-jian,LI Yan-meng,WU Shan-na,ZHANG Bei,YAO Jing-yi. PHP14 Plays a Role in Epithelial-Mesenchymal Transition of AML-12Cell Through Interaction with Vimentin[J]. China Biotechnology, 2021, 41(2/3): 1-6.
[3] Jie XIAN,Xue QIN,You-de CAO. Numb Inhibits the Ubiquitination Degradation of p53 by HDM2 in Triple-negative Breast Cancer[J]. China Biotechnology, 2019, 39(7): 1-7.
[4] Qun WAN,Meng-yao LIU,Jing XIA,Li-yao GOU,Min TANG,Shi-lei SUN,Yan ZHANG. The Effects of LncRNA SNHG3 on the Proliferation, Migration and Invasion of Human Breast Cancer MCF-7 Cells[J]. China Biotechnology, 2019, 39(1): 13-20.
[5] Li-yao GOU,Meng-yao LIU,Jing XIA,Qun WAN,Chi-lei SUN,Min TANG,Yan ZHANG. The Effects of Bone Morphogenetic Protein 9(BMP9) on the Proliferation and Migration of Human Bladder Cancer BIU-87 Cells[J]. China Biotechnology, 2018, 38(5): 10-16.
[6] Yi-man LI,Qin ZHOU. The Effects of Herpud1 on Metanephric Mesenchymal Cells and Its Mechanism[J]. China Biotechnology, 2018, 38(3): 9-15.
[7] FENG Yuan, TANG Yun, XU Lei, TAN Hai-gang. Algal Polysaccharides Inhibits Proliferation and Migration of Liver Cancer Cell Hep3B Via Down-regulation of EMP Pathway[J]. China Biotechnology, 2017, 37(9): 31-40.
[8] SONG Li-jie, WANG Li, YANG Chuan-hong, LAI Huang-wen, WANG Jie. Effect of Cas9 Protein on Biological and Ultrastructural Characteristics of the Human Bone-seeking Breast Cancer Cell Line[J]. China Biotechnology, 2016, 36(7): 1-6.
[9] LI Yu-qiang, ZHU Zhi-tu, WANG Wei, LI Chen, XU Na, WANG Yu, LI Nan, SUN Hong-zhi. Effect of Silencing Nup88 Gene by RNA Interference on Growth and Invasion in Human Breast Cancer MCF-7 Cell[J]. China Biotechnology, 2014, 34(9): 31-39.
[10] CHEN Li, CAO Ying. Effects and Possible Mechanisms of PKA on the Development of Zebrafish Pronephron[J]. China Biotechnology, 2014, 34(10): 41-48.
[11] LI Fei-fei, FANG Jing, MA Qiong, FU Hui, MAO Jian-ping. Natural Borneol Liquid Induced Cancer Cells Apoptosis[J]. China Biotechnology, 2013, 33(5): 22-27.
[12] GUO Chun-fang, ZHANG Yang-de, WANG Ji-wei, PAN Yi-feng, LIAO Ming-mei, WANG Ning. Characterization and the Anti-tumor Effect of Doxorubicin Flexible Liposome in vitro[J]. China Biotechnology, 2013, 33(3): 9-14.
[13] SUN Xiao-xiao, WANG Ke, FENG Hong-lei, LIU Yue-hong, WAN Shao-heng, LUO Jin-yong, ZHANG Yan. Effects and Possible Mechanism of BMP9 on the Bone Metastasis of Human Breast Cancer Cells MDA-MB-231[J]. China Biotechnology, 2012, 32(03): 7-13.
[14] WU Chen, GE Jian-feng, ZHANG Bo, MA Si-si, LIU Fang-ming, WANG Yuan-yuan, TIAN Huan-na, LIU Xiao-bo, ZHANG Xiao-kang, LI Qin-jian. Expression,Purification and Activity Analysis of Human GALNT14 in Pichia Pastoris[J]. China Biotechnology, 2011, 31(11): 58-63.
[15] XIE Qiu-ling, LU Jia, LIU Lan, ZHANG Chuan-yu, GUO Xin-yong, PENG Wen-dan, CHEN Xiao-jia. Study of Human PDGFR β Promoter in Different Human Breast Cancer Cells[J]. China Biotechnology, 2011, 31(04): 18-24.