Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (07): 102-106    DOI:
    
Immobilized Technology Impact on Fermentation ATP Ability of Yeast
YAN Xiang-ru, LIN Li-ping, HE Ming-fang, CHEN Wei-ping
College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
Download: HTML   PDF(724KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Immobilization method of yeast cell and its application in fermentation production of ATP are discussed. Considering the performance index of immobilized particles(particle size, elasticity and mechanical strength) and the capacity of fermentation producing ATP, orthogonal experiments optimize embedding conditions of the yeast. The optimal immobilization conditions of yeast cell was determined that is 3.5% of polyvinyl alcohol, 2% of sodium alginate, 3% of CaCl2 and 6 hours of cross-linking time. Under this fermentation condition, the content of ATP was the highest, reaching 0.783g/L. Further fermentation experiments confirmed that the immobilization of yeast cell can improve the temperature adaptation range, and lengthen the fermentation cycle of producing ATP.

Key wordsImmobilization      ATP      Yeast     
Received: 08 February 2012      Published: 25 July 2012
ZTFLH:  Q815  
Cite this article:

YAN Xiang-ru, LIN Li-ping, HE Ming-fang, CHEN Wei-ping. Immobilized Technology Impact on Fermentation ATP Ability of Yeast. China Biotechnology, 2012, 32(07): 102-106.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I07/102

[1] 薛亮,黄祖新,罗招城,等.海藻酸钠-PVA固定化酿酒酵母制备工艺的优化.酿造科技,2009, 2:27-30. Xue L, Huang Z X, Luo Z C, et al. Optimization of the techniques of S.cerevisiae immobilization by sodium alginate and PVA. Liquor-Making Science & Technology, 2009, 2:27-30.
[2] Fu N,Peiris P,Markham J,et al. A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose /xylose mixtures. Enzyme and Microbial Technology,2009,45( 3): 210-217.
[3] 丁成,杨波,等.固定化对氯苯酚降解菌在生物硫化床上的降解特性.环境工程学报,2011,5(1):70-74. Ding C, Yang B, et al. Degradation characteristics of immobilized p-chlorophenol-degradating strain in bio-fluidized bed reactor.Chinese Journal of Environmental Engineering, 2011,5(1):70-74.
[4] 张建国,蔡瑞,李新华,等.发酵重组Pichia pastoris生产腺苷甲硫氨酸的研究. 工业微生物,2004,34(4): 1-5. Zhang J G,Cai R,Li X H, et al. Optimization of S-adenosylmethionine production by recombinant Pichia pastoris. Industrial Microbiology, 2004,34(4):1-5.
[5] Petra Meissner Bernd Sehrotder Development of a fixed bed bioreactor for the expansion of human hematopoietie progenitor cells.Cytotechnology,1999,30.
[6] Kyung Won Jung,Dong Hoon Kim,Sang HyounKim,et al.Bioreactor design for continuous dark fermentative hydrogen production.Bioresource Technology, 2011,102:8612 8620.
[7] Wanying Yao, Xiao Wu, Jun Zhu,et al.Bacterial cellulose membrane -A new support carrier for yeast immobilization for ethanol fermentation.Process Biochemistry, 2011,46:2054-2058.
[8] 王斌,江和源,张建勇,等.固定化多酚氧化酶填充床反应器连续制备茶黄素.食品与发酵工业,2011,37 (5):40-44. Wang B, Jiang H Y, Zhang J Y,et al. Study on continuous preparation of theaflavins by immobilized polyphenol enzyme in packed bed reactor.Food and Fermentation Industries,2011,37 (5):40-44.
[9] 牛卫宁,左晓佳,丁焰,等.固定化E.Coli JM109细胞催化合成S-腺苷蛋氨酸.现代化工,2009,26(3):288-292. Niu W N, Zuo X J, Ding Y,et al. Biosynthesis of S-adenosylmethionine by immobilized whole cell of E. Coli JM109 (pBR322-MAT). Modern Chemical Industry, 2009,26(3):288-292.
[10] 刘惠,林建平,吴坚平,等.酿酒酵母生物转化蛋氨酸生产SAM.化学反应工程与工艺,2002,18(4):310-314. Liu H, Lin J P, Wang J P,et al.Production of S-adenosyl-L-methionine using Saccharomyces cerevisiae by bioconversion of L-methionine. Chinese Reaction Engineering and Technology, 2002,18(4):310-314.
[11] Shozo S,Sakayu S,Hideaki Y.Prdduction of S-adenosyl-L-methionine by Saccharomyces sake.J Biotechnol,1986,4(6):345-354.
[1] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[2] YANG Liu,MOU Hao,XU Guo-yang,BAI Yun-chuan,YU Yuan-di. Analysis of the Difference in Color Development of Cultured Goatpox Virus Common Cells in X-gal Environment[J]. China Biotechnology, 2021, 41(9): 48-54.
[3] CHEN Kai-tong,ZHENG Wen-long,YANG Li-rong,XU Gang,WU Jian-ping. Immobilized L-threonine Aldolase by Amino Resin and Its Application[J]. China Biotechnology, 2021, 41(9): 55-63.
[4] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[5] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[6] CHEN Ying,LI Qian. Patent Analysis on the Development Trend of Industrial Application of Special Yeast[J]. China Biotechnology, 2021, 41(4): 91-99.
[7] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[8] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[9] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[10] ZHANG Xiao-mao,GUO Jing-han,HONG Jie-fang,LU Hai-yan,DING Juan-juan,ZOU Shao-lan,FAN Huan. Evaluation of UPR Response in Yeast by Using UPRE-lac Z as a Reporter Gene[J]. China Biotechnology, 2020, 40(10): 1-9.
[11] HU Yan,LI Hui,HE Cheng-wen,ZHU Jing,XIE Zhi-ping. Construction of a Yeast Strain for the Evaluation of Subcellular Fractionation[J]. China Biotechnology, 2020, 40(10): 10-23.
[12] Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin[J]. China Biotechnology, 2019, 39(4): 38-51.
[13] ZHANG Ying,WANG Ying,YANG Li-rong,WU Jian-ping. DA-F127 Hydrogel Embedded Immobilized the Nitrile Hydratase-Containing Cells[J]. China Biotechnology, 2019, 39(11): 70-77.
[14] JIN Xue,SONG Jing-zhen,XIE Zhi-ping. Searching for the Subcellular Targeting Sequences of Ste2,a GPCR Protein in Saccharomyces cerevisiae[J]. China Biotechnology, 2019, 39(11): 39-53.
[15] Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis[J]. China Biotechnology, 2018, 38(8): 41-49.