Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (04): 96-102    DOI:
    
Characterization of the Photoelectrode Based on the Immobilization of Microalgae
LV Yan-xia1,2, CHEN Zhao-an1, LU Hong-bin1, DENG Mai-cun1, XUE Song1, ZHANG Wei1
1. Marine Bioproducts Engineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
2. Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
Download: HTML   PDF(1166KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The microalgae photoelectrode prepared by immobilizing microalgae on the porous carbon paper displayed light-dependent electrogenic activity with electron mediators in a three-electrode system. The effect of different immobilization methods, diverse genera of microalgae and different electron mediators on photocurrent responses were investigated. The results showed that microalgae immobilized on the anode via silica sol-gel encapsulation exhibited the best photocurrent response. The diverse genera of microalgae including eukaryotic alga (Tetraselmis subcordiformis, Chlorella pyrenoidosa, Chlamydomonas reinhardtii CC 124, Isochrysis zhanjiangensis) and prokaryon alga (Synechococcus sp. PCC 7942) had similar response, demonstrating that the electrons from photosynthetic electron transfer chain of diverse genera of microalgae could be transferred to the electrode via exogenous artificial electron mediator. Benzoquinone and its derivatives as the electron mediator had anodic photocurrent response due to high redox potential, while methyl viologen exhibited low cathodic photocurrent response because of its low redox potential.



Key wordsMicroalgae      Silicon sol-gel      Immobilization      Photoinduced electron transfer     
Received: 13 January 2012      Published: 25 April 2012
ZTFLH:  Q819  
Cite this article:

LV Yan-xia, CHEN Zhao-an, LU Hong-bin, DENG Mai-cun, XUE Song, ZHANG Wei. Characterization of the Photoelectrode Based on the Immobilization of Microalgae. China Biotechnology, 2012, 32(04): 96-102.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I04/96


[1] Flexer V, Mano N. From dynamic measurements of photosynthesis in a living plant to sunlight transformation into electricity. Anal Chem, 2010, 82 (4):1444-1449.

[2] Fu C C, Su C H, Hung T C, et al. Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis. Bioresour Technol, 2009, 100(18):4183-4186.

[3] Torimura M, Miki A, Wadano A. Electrochemical investigation of cyanobacteria Synechococcus sp. PCC7942-catalyzed photoreduction of exogenous quinones and photoelectrochemical oxidation of water. J Electroanal Chem, 2001, 496(1-2):21-28.

[4] Tsujimura S, Wadano A, Kano K, et al. Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase. Enzyme Microb Tech, 2001, 29(4-5):225-231.

[5] Cao X X, Huang X, Liang P, et al. A completely anoxic microbial fuel cell using a photobiocathode for cathodic carbon dioxide reduction. Energy Environ Sci, 2009, 2(5):498-501.

[6] Kasuno M, Torimura M, Tsukatani Y, et al. Characterization of the photoinduced electron transfer reaction from the photosynthetic system in Rhodobacter sphaeroides to an exogenous electron acceptor. J Electroanal Chem, 2009, 636(1-2):101-106.

[7] Sridharan A, Muthuswamy J, Labelle J T,et al. Immobilization of functional light antenna structures derived from the filamentous green bacterium Chloroflexus aurantiacus. Langmuir, 2008, 24(15):8078-8089.

[8] Okano M, Iida T, Shinohara H, et al. Water photolysis by a photoelectrochemical cell using an immobilized choroloplasts-methyl viologen system. Agric Biol Chem, 1984, 48(8):1977-1983.

[9] Lam K B.Irwin E F, Healy K E, et al. Bioelectrocatalytic self-assembled thylakoids for micro-power and sensing applications. Sensor Actuat B-Chem, 2006, 117(2):480-487.

[10] Ahmed J, Park W, Kim S. Photoelectric activity of thylakoid layer formed on gold via aminoalkanethiol self-Assembled monolayers. B Kor Chem Soc, 2009, 30(10): 2195-2196.

[11] Faulkner C J, Lees S, Ciesielski P N. Rapid assembly of photosystem I monolayers on gold electrodes. Langmuir, 2008, 24(16):8409-8412.

[12] Amako K, Yanai H, Ikeda T, et al. Dimethylbenzoquinone-mediated photoelectrochemical oxidation of water at a carbon paste electrode coated with photosystem II membranes. J Electroanal Chem, 1993, 362(1-2):71-77.

[13] Ikeda T, Senda M, Shiraishi T, et al. Electrocatalytic photolysis of water at photosystem II-modified carbon paste electrode containing dimethylbenzoquinone. Chem Lett, 1989, 5:913-916.

[14] Badura A, Esper B, Ataka K, et al. Light-driven water splitting for (bio-)hydrogen production: photosystem II as the central part of a bioelectrochemical device. Photochem Photobiol, 2006, 82(5):1385-1390.

[15] Strik D, Timmers R A, Helder M, et al. Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol, 2011, 29(1):41-49.

[16] Rosenbaum M, He Z, Angenent L. Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol, 2010, 21(3):259-264.

[17] Meunier C F, Yang X Y, Rooke J C, et al. Biofuel cells based on the immobilization of photosynthetically active bioentities. Chemcatchem, 2011, 3(3):476-488.

[18] Schroder U, Rosenbaum M. Photomicrobial solar and fuel cells. Electroanal, 2010, 22, (7-8):844-855.

[19] 刘远, 陈兆安, 陆洪斌, 等. 亚心形扁藻培养基的优化及光合特性.过程工程学报, 2007, 7(6):1197-1201. Liu Y, Chen Z A, Lu H B, et al. Optimization of culture medium and photosynthetic characteristics of platymonas subcordiformis.Chin J Process Eng, 2007, 7(6):1197-1201.

[20] 陈兆安, 吕艳霞,吴佩春等. 一种导电性微滤膜及其制备方法: 中国, 201110066253.5. Chen Z A, Lv Y X, Wu P C, et al. Preparation of conductive microfiltration membrane: China, 201110066253.5.

[21] Fiedler D, Hager U, Franke H, et al. Algae biocers: astaxanthin formation in sol-gel immobilized living microalgae. J Mater Chem, 2007, 17 (3):261-266.

[22] Soltmann U, Bottcher H. Utilization of sol-gel ceramics for the immobilization of living microorganisms. J Sol-Gel Sci Techn, 2008, 48 (1-2):66-72.

[23] Badura A, Kothe T, Schuhmann W, et al. Wiring photosynthetic enzymes to electrodes. Energy Environ. Sci., 2011, 4: 3263-3274

[1] CHEN Kai-tong,ZHENG Wen-long,YANG Li-rong,XU Gang,WU Jian-ping. Immobilized L-threonine Aldolase by Amino Resin and Its Application[J]. China Biotechnology, 2021, 41(9): 55-63.
[2] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[3] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[4] Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin[J]. China Biotechnology, 2019, 39(4): 38-51.
[5] ZHANG Ying,WANG Ying,YANG Li-rong,WU Jian-ping. DA-F127 Hydrogel Embedded Immobilized the Nitrile Hydratase-Containing Cells[J]. China Biotechnology, 2019, 39(11): 70-77.
[6] Zheng-san ZUO,Xiao-man SUN,Lu-jing REN,He HUANG. Improvement of Lipid Accumulation in Microalgae by Novel Cultivation Strategies[J]. China Biotechnology, 2018, 38(7): 102-109.
[7] Kai DU,Zhuo-ling ZHANG,Ting-hua LI,Wei RAO. The Research Progress of Antibody Immobilization[J]. China Biotechnology, 2018, 38(4): 78-89.
[8] LI Ji-bin, CHEN Zhi, CHEN Hua-you. Research Progress on Cloning, Expression,Immobilization and Molecular Modification of Nitrilase[J]. China Biotechnology, 2017, 37(9): 141-147.
[9] SI Hong-yu, WANG Bing-lian, LIANG Xiao-hui, ZHANG Xiao-dong. Study of Rapid Determination for Glycerol Content by Enzyme Electrode[J]. China Biotechnology, 2016, 36(12): 79-85.
[10] WANG Cai-xia, ZHANG Teng-jiang, TENG Jie, FENG Xu-dong, LI Chun. The Efficient Carbon-oxygen Transformation and Regulation of Desert Microalgaes[J]. China Biotechnology, 2016, 36(10): 45-52.
[11] YANG Kai, ZHAN Jing-ming, GAO Fen-fang, WU Bao-li, SU Li-xia, ZHOU Wen-ming, XUE Xiang-ming, HAO Jie, ZHAO Yang. Research of Chlorella on the Production of Biodiesel[J]. China Biotechnology, 2015, 35(11): 99-104.
[12] TANG Yu-lan, CHEN Zuan-guang, CHENG Zhi-yi. Research Progress in Multi-enzyme Co-immobilization Reaction Systems[J]. China Biotechnology, 2015, 35(1): 82-87.
[13] LI Yang, LI Ru-ying, JI Min. Application of Immobilization Technology on Enhancing Hydrogen Production by Photosynthetic Bacteria[J]. China Biotechnology, 2014, 34(7): 96-101.
[14] LI Xie-kun, ZHOU Wei-zheng, GUO Ying, WU Hao, XU Jing-liang, YUAN Zhen-hong. Research Progress on Bioethanol Production with Microalgae as Feedstocks[J]. China Biotechnology, 2014, 34(5): 92-99.
[15] LI Gang-rui, LI Lin-li, FAN Xang, MENG Yan-fa. Immobilization and Properties of Lipase from Aspergillus niger on Sol-gels,Hydrophobic Supports[J]. China Biotechnology, 2014, 34(4): 78-84.