Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (04): 47-52    DOI:
    
Effects of Modification in Operon-leader Region and Strengthening in PRPP Synthesis Pathway on L-histidine Accumulation by Escherichia coli
LU Li-ning, CHENG Yong-song, XIE Xi-xian, XU Qing-yang, CHEN Ning
College of Biological Engineering, Tianjin University of Science & Technology, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
Download: HTML   PDF(667KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Based on Escherichia coli MG1655-ΔtktA, histidine-operon leader region was replaced by strong promoter T5, 6-phosphoglucose dehydrogenase(zwf), 6-phosphogluconate dehydrogenase(gnd) and phosphoribosylpyrophosphate synthetase(prs) were overexpressed. Effects of the above modifications on L-histidine accumulation were investigated. Methods: In strain with tktA interrupted, leader region in histidine operon was replaced by T5 promoter by Red recombination system from bacteriophage λ. By cloning technology, zwf and gnd were coexpressed on pSTV28 and prs was expressed on pQE30. Effects of the above modifications on L-histidine accumulation were compared by fermentation in flasks. Results: Quantified by HPLC, trace L-histidine was accumulated in fermentation mediums for those strains with leader region replaced by promoter T5——MG1655-ΔtktA-PT5, MG1655-ΔtktA-PT5(prs-pQE30), MG1655-ΔtktA-PT5(zwf-gnd-pSTV28), and MG1655-ΔtktA-PT5 (prs-pQE30, zwf-gnd-pSTV28) with 60.12 mg/L, 66.47 mg/L, 89.69 mg/L and 111.56 mg/L, respectively. Conclusion: Modification of leader region in operon strengthened the ability to synthesize L-histidine. Afterward, elevation in oxidative pentose phosphate pathway level and PRPP synthetase activity resulted in increased accumulation.



Key wordsL-histidine      Operon      Promoter      zwf      gnd      prs     
Received: 05 December 2011      Published: 25 April 2012
ZTFLH:  Q819  
Cite this article:

LU Li-ning, CHENG Yong-song, XIE Xi-xian, XU Qing-yang, CHEN Ning. Effects of Modification in Operon-leader Region and Strengthening in PRPP Synthesis Pathway on L-histidine Accumulation by Escherichia coli. China Biotechnology, 2012, 32(04): 47-52.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I04/47


[1] 陈宁. 氨基酸工艺学. 北京: 中国轻工业出版社, 2007.387. Chen N. Amino Acid Technology. Beijing: China Light Industry Press, 2007.387.

[2] 王镜岩, 朱胜庚, 徐长法. 生物化学. 第3版. 北京: 高等教育出版社, 2002.151-153. Wang J Y, Zhu S G, Xu C F. Biochemistry. 3rd ed. Beijing: Higher Education Press, 2002.151-153.

[3] Wayne M B. DNA sequence from the histidine operon control region: Seven histidine codons in a row. Biochemistry, 1978, 75(9): 4281-4285.

[4] Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS, 2000, 97(12): 6640-6645.

[5] Jensen B H. Mutation in the phosphoribosylpyrophosphate synthetase gene (prs) that results in simultaneous requirements for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine, and tryptophan in Escherichia coli. Journal of Bacteriology, 1988, 170(3): 1148-1152.

[6] Robert L S, David C S. Regulation and mechanism of phosphoribosylpyrophosphate synthetase. V. Inhibition by end products and regulation of adenosine diphosphate. The Journal of Biological Chemistry, 1972, 248(3): 1063-1073.

[7] Elena V K, Rustem S S, Yuri I K. Mutant phosphoribosylpyrophosphate synthetase and method for producing L-histidine: Russia, US2009/0275089 A1. 2009.11.5.

[8] Flores S, Gosset G. Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway. Biotechnology and Bioengineering, 2004, 87(4): 485-494.

[9] 陈宁, 李颖, 刘淑云, 等. D-核糖生产菌的原生质体诱变育种及其发酵条件的研究. 天津轻工业学院学报, 2000, 2: 17-21. Chen N, Li Y, Liu S Y, et al. The breeding of D-ribose producing strains and studies on its fermentation condition. Journal of Tianjin Institute of Light Industry, 2000, 2: 17-21.

[10] 张雪, 闫继爱, 于雷, 等. 含苏氨酸操纵子重组质粒的构建及其对大肠杆菌L-苏氨酸积累的影响. 微生物学报, 2009, 49(5): 591-596. Zhang X, Yan J A, Yu L, et al. Construction of recombinant plasmids containing threonine operon and their effects on L-threonine accumulation. Acta Microbiologica Sinica, 2009, 49(5): 591-596.

[11] 邹永康, 周军智, 孙旭, 等. 基于PTS缺陷型大肠杆菌构建莽草酸生产菌. 微生物学通报, 2011, 38(8): 1186-1192. Zou Y K, Zhou J Z, Sun X, et al. Construction of shikimic acid-producing engineered Escherichia coli strains based on ptsHIcrr mutants. Microbiology China, 2011, 38(8): 1186-1192.

[12] Camps M. Modulation of ColE1-like plasmid replication for recombinant gene expression. Gene, 2010, 4(1): 58-73.

[13] Popov M, Petrov S, Nacheva G, et al. Effects of a recombinant gene expression on ColE1-like plasmid segregation in Escherichia coli. BMC Biotechnology, 2011, 11(18): 1-12.

[14] 陈涛, 王靖宇, 班睿, 等. 核黄素操纵子在B.subtilis 24R7 染色体上整合对核黄素合成的影响. 无锡轻工大学学报, 2005, 24 (l): 6-10. Chen T, Wang J Y, Ban R, et al. The effect of integration of riboflavin operon in B. subtilis 24R7 chromosome on riboflavin production. Journal of Wuxi University of Light Industry, 2005, 24 (l): 6-10.

[15] 葛菁萍, 曹喜生, 宋刚, 等. 木酮糖激酶基因整合表达载体构建及在酿酒酵母中的过表达. 微生物学报, 2010, 50(6): 762-767. Ge J P, Cao X S, Song G, et al. Construction of integrative vector for xylulokinase gene and its overexpression in Saccharomyces cerevisiae. Acta Microbiologica Sinica, 2010, 50(6): 762-767.

[1] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[2] ZHU Ya-xin, DUAN Yan-ting, GAO Yu-hao, WANG Ji-yue, ZHANG Xiao-mei, ZHANG Xiao-juan, XU Guo-qiang, SHI Jin-song, XU Zheng-hong. Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios[J]. China Biotechnology, 2021, 41(1): 1-11.
[3] XUAN Mei-juan,ZHANG Xiao-yun,GAO Ying,Li-GAO Ying,WU Jia-jing,MA Mei,WANG Yan-mei,KOU Hang,LU Fu-ping,LI Ming. Characterization of Promoters in the Glycolytic Pathway and Tricarboxylic Acid Cycle of E. coli and Its Application[J]. China Biotechnology, 2020, 40(6): 20-30.
[4] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[5] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[6] HUANG Yu,HUANG Shu-ting,ZHANG Xi-mei,LIU Yan. Cloning and Functional Analysis of the Promoter of HSP70 Gene in Gobiocypris rarus[J]. China Biotechnology, 2019, 39(10): 9-16.
[7] Ya-fang LI,Ying-hui ZHAO,Sai-bao LIU,Wei WANG,Wei-jun ZENG,Jin-quan WANG,Hong-yan CHEN,Qing-wen MENG. Chicken OV Promoter Expressed HA to Protect Chickens from Lethal Challenge of AIV[J]. China Biotechnology, 2018, 38(7): 67-74.
[8] Jia-zhen WANG,Lun-guang YAO,Feng WANG,Yun-chao KAN,Jin-ping LUO,Qian-qian HUANG,Jian-ping DUAN. Cloning and Activity Analysis of a Midgut-specific Promoter in Silkworm (Bombyx mori)[J]. China Biotechnology, 2018, 38(2): 13-17.
[9] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[10] Peng HUANG,Li-ping YAN,Ning ZHANG,Jin-lei SHI. Constitutive Expression of Human Goose-type Lysozyme 2 in Pichia pastoris Using the GAP Promoter[J]. China Biotechnology, 2018, 38(10): 55-63.
[11] Wen-juan CHAI,Qi YANG,Guo-jing LI,Rui-gang WANG. CiMYB15 from Caragana Intermedia Positively Regulates Flavonoids Metabolism of Arabidopsis[J]. China Biotechnology, 2018, 38(10): 8-19.
[12] NIE Yong-qiang, MA Hai-yan, MA Qing-wen. An in vivo Robust System for Generation of Site-specific Integration Minicircle DNA Vector[J]. China Biotechnology, 2017, 37(7): 80-87.
[13] XIA Hui, LIU Lei, WANG Xiu, SHEN Yan-qiu, GUO Yu-lun, LIANG Dong. Research on Stress-inducible Expression Characteristics of Sorbitol-6- phosphate Dehydrogenase Promoter from Apple[J]. China Biotechnology, 2017, 37(6): 50-55.
[14] NI Xuan, GAO Jin-xin, YU Chuan-jin, LIU Tong, LI Ya-qian, CHEN Jie. Bioinformatic Analysis and Promoter Identification of clt-1 Gene in Curvularia Lunata[J]. China Biotechnology, 2017, 37(3): 37-42.
[15] LUO Feng-xue, LI Fo-sheng, YAO Min, XU Ying. The Cloning and Transient Expression Analysis of Promoter of OsHAK26 from Oryza sativa[J]. China Biotechnology, 2017, 37(2): 33-39.